# Artelys Knitro 11.0

SOCP, API, Preconditioner and much more!



# **COMPANY OVERVIEW**

# 

We specialize in optimization, decision-support, modeling and deliver efficient solutions to complex business problems.

# Domains of expertise

- I Energy
- | Transport & Logistic
- l Defense
- Numerical and Combinatorial Optimization



#### Services

- Auditing & Consulting
- I On demand software
- l Distribution and support of numerical optimization tools
- I Training



# NUMERICAL OPTIMIZATION TOOLS

#### 

Industry leading solver for very large, difficult nonlinear optimization problems (NLP, MINLP)



## FICO Xpress Optimization Suite

High performance linear, quadratic and mixed integer programming solver (LP,MIP,QP)



### Artelys Kalis

Object-oriented environment to model and solve problems with constraints programming techniques



#### 4 AMPL

Comprehensive modeling language for Mathematical Programming





# Background

- Created in 2001 by Ziena Optimization
  - → Spin-off of Northwestern University
- Now developed and supported by Artelys



# 4 Key features

- Efficient and robust solution on large scale problems ( $^{\sim}10^5$  variables)
- Four active-set and interior-point algorithms for continuous optimization
- MINLP algorithms and complementarity constraints for discrete optimization
- Many extra features based on customer feedbacks or project requirements
- Parallel multi-start method for global optimization.
- Easy to use and well documented: Online documentation



# Widely used in academia...

- US Top Universities: Berkeley, Columbia, Harvard, MIT, Stanford...
- Worldwide Top Universities: ETH Zürich, LSE, NUS (Singapore), Melbourne...

# ... and industry

- Economic consulting firms
- I Financial institutions
- Mechanical engineering companies
- I Oil & Gas companies
- l Regulator & Policy maker
- | Software developers
  - Used as a third-party optimization engine

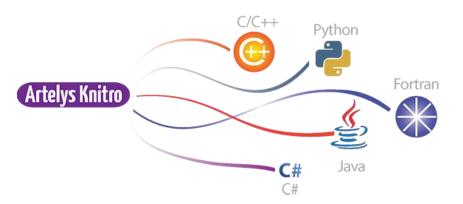


More than 400 institutions in over 40 countries rely on Artelys Knitro

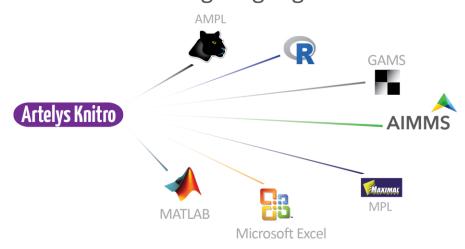


#### Interfaces

Programming languages



#### | Modeling languages



# Supported platforms



Windows 32-bit, 64-bit



Linux 64-bit

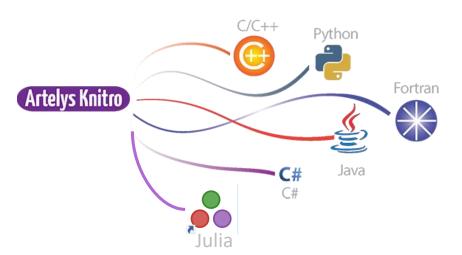


macOS 64-bit

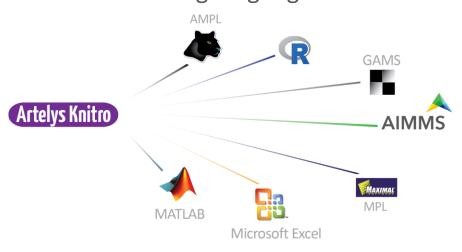


#### Interfaces

Programming languages



#### | Modeling languages



## Supported platforms



Windows 32-bit, 64-bit



Linux 64-bit



macOS 64-bit

## PROBLEM CLASSES SOLVED BY KNITRO

$$\min_{x \in \mathbb{R}^n, y \in \mathbb{Z}^m} f(x, y)$$
s.t. 
$$g_i(x, y) \ge 0 \qquad i \in I$$

$$h_j(x, y) = 0 \qquad j \in J$$

$$0 \le x_k \perp x_l \ge 0 \quad (k, l) \in C \subset [1, n]^2$$

$$l_x \le x \le u_x$$

$$l_y \le y \le u_y$$

- Variables (x and y):
  - Continuous or discrete
  - Bounded or unbounded
- Objective (f) and constraints (g and h):
  - Linear or nonlinear
  - Smoothness: required, but may still work without it
  - Convexity: better but not required, local optimization or global optimization with multistart,
- Complementarity constraints:
  - $-0 \le x_k \perp x_l \ge 0$  is equivalent to:  $x_k \ge 0$  and  $x_l \ge 0$  and  $x_l \ge 0$  and  $x_l \ge 0$  are  $x_l = 0$
  - Applications: strategic bidding, economic models, equilibrium constraints, disjunctions



#### ▲ Artelys Knitro 11.0 new features:

- I New SOCP Algorithm
  - → Detect conic constraints from quadratic structures
  - → Designed for **general nonlinear problems with SOC constraints**
- I New C API
  - → Easier to use
  - → Allows passing problem structure (eg linear, quadratic, conic constraints) with dedicated API and without providing Hessian
- l Preconditioning for all classes of problems
  - → **Preconditioning** can now be used for problems with **equality** and inequality constraints
- New parallel linear solvers
  - → HSL MA86 (non-deterministic) and MA97 (deterministic)
  - → Speedups on large scale problem with shared memory parallelism
- l Performance improvements

  - → Speedups on general convex problems
  - → Speedups on MINLP algorithms

#### △ Artelys Knitro 11.0 new features:

- New SOCP Algorithm
  - → Detect conic constraints from quadratic structures
  - → Designed for **general nonlinear problems with SOC constraints**
- I New CAPI

  - → Allows passing problem structure (eg linear, quadratic, conic constraints) with dedicated API and without providing Hessian
- l Preconditioning for all classes of problems
  - → **Preconditioning** can now be used for problems with **equality** and inequality constraints
- I New parallel linear solvers
  - → HSL MA86 (non-deterministic) and MA97 (deterministic)
  - → Speedups on large scale problem with shared memory parallelism
- l Performance improvements

  - → Speedups on general convex problems
  - → Speedups on MINLP algorithms

#### △ Artelys Knitro 11.0 new features:

- l New SOCP Algorithm
  - → Detect conic constraints from quadratic structures
  - → Designed for **general nonlinear problems with SOC constraints**
- New C API
- ☐ Easier to use
- → Allows passing problem structure (eg linear, quadratic, **conic constraints**) with dedicated API and without providing Hessian
- l Preconditioning for all classes of problems
  - → **Preconditioning** can now be used for problems with **equality** and inequality constraints
- I New parallel linear solvers
  - → HSL MA86 (non-deterministic) and MA97 (deterministic)
  - → Speedups on large scale problem with shared memory parallelism
- l Performance improvements

  - → Speedups on general convex problems
  - → Speedups on MINLP algorithms

### Artelys Knitro 11.0 new features:

- New SOCP Algorithm
  - → Detect conic constraints from quadratic structures
  - → Designed for **general nonlinear problems with SOC constraints**
- New C API

  - → Allows passing problem structure (eg linear, quadratic, conic constraints) with dedicated API and without providing Hessian

www.artelys.com

- Preconditioning for all classes of problems
  - → **Preconditioning** can now be used for problems with **equality** and inequality constraints
- New parallel linear solvers
  - → HSL MA86 (non-deterministic) and MA97 (deterministic)
  - Speedups on large scale problem with shared memory parallelism
- Performance improvements

  - → Speedups on general convex problems
  - → Speedups on MINLP algorithms

# SOCP





### SECOND ORDER CONE CONSTRAINTS

■ Standard Second Order Cone (SOC) of dimension k is

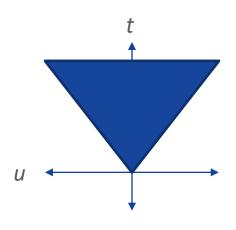
$$\left\{ \begin{bmatrix} t \\ u \end{bmatrix} \middle| u \in \mathbb{R}^{k-1}, t \in \mathbb{R}^1, ||u|| \le t \right\}$$

 $\triangle$  For k=1

$$\{t | t \in R^1, 0 \le t\}$$

**△** For *k*=2

$$\left\{ \begin{bmatrix} t \\ u \end{bmatrix} \middle| u \in R^1, t \in R^1, |u| \le t \right\}$$





# SECOND ORDER CONE PROGRAMS (SOCP)

**4** Set u = Ax + b and  $t = c^{T}x + d$  to create general second order cone constraints of form

$$||Ax + b|| \le c^T x + d$$

■ Second Order Cone Program (SOCP):

$$\min_{x} f^{T}x$$
 s.t. 
$$||A_{i}x + b_{i}|| \leq c_{i}^{T}x + d_{i}, \quad i=1..m$$
 
$$G^{T}x + h \leq 0$$

Convex QP and QCQP (and more) can be converted to SOCP

# **APPLICATIONS**



# Applications

- Finance: portfolio optimization with loss risk constraints
- Facility location (e.g. antenna placement in wireless network)
- Robust optimization (under ellipsoid uncertainty)
- Robust least squares
- | Grasping force optimization
- | FIR filter design
- | Truss design
- See Applications of Second-Order Cone Programming, Lobo, Vandenberghe, Boyd, Lebret

Apr 16, 2018

#### Quadratic constraint

$$x^{T} Qx + 2q^{T} x + r \le 0$$

$$\|Q^{1/2} x + Q^{-1/2} q\|^{2} + r - q^{T} Q^{-1} q \le 0$$

$$\|Q^{1/2} x + Q^{-1/2} q\| \le (q^{T} Q^{-1} q - r)^{1/2}$$

#### A Rotated cone constraint

$$x^{T}x \le yz, y \ge 0, z \ge 0$$

$$4x^{T}x + y^{2} + z^{2} \le 4yz + y^{2} + z^{2}$$

$$\sqrt{4x^{T}x + (y - z)^{2}} \le y + z$$

$$\begin{vmatrix} 2x \\ y - z \end{vmatrix} \le y + z$$



# KNITRO CONIC SOLVER

Month of the constraints in form
A Knitro identifies the constraints in form

$$\sum_{i=1}^{n} a_i x_i^2 \le a_0 x_0^2, \quad x_0 \ge 0$$

and

$$\sum_{i=2}^{n} a_i x_i^2 \le a_0 x_0 x_1, \quad x_0, x_1 \ge 0.$$

as second order cone constraints, and internally puts them into the standard form

It also allows to input constraints in form

$$||Ax + b|| \le cx + d$$

directly via the struct 'L2norm'

Currently, it does second order conic constraint identification on the presolved problem

# KNITRO CONIC SOLVER

4 Knitro conic solver moves beyond SOCP (more general)

$$\min_{x} f^{T}x$$
s.t. 
$$||A_{i}x + b_{i}|| \le c_{i}^{T}x + d_{i}$$

$$G^{T}x + h \le 0$$

$$\min_{x} f(x)$$
s.t. 
$$||A_i x + b_i|| \le c_i^{\mathrm{T}} x + d_i$$

$$h(x) = 0$$

$$g(x) \le 0$$

- Handle any nonlinear problem with second order cone constraints, including non-convex
- First specialized solver of this kind!
- Extension of existing Knitro Interior/Direct algorithm



# KNITRO CONIC SOLVER

It generalizes the operations on the slack variables in the existing Knitro/Direct algorithm using the algebra associated with second order cones

$$\min f(x)$$

$$g(x) \le 0$$

$$H(x) \in K.$$

$$H(x) := Mx + v = \begin{pmatrix} c_1 \\ A_1 \\ \dots \\ c_t \\ A_t \end{pmatrix} x + \begin{pmatrix} d_1 \\ b_1 \\ \dots \\ d_t \\ b_t \end{pmatrix}$$



$$min f(x)$$

$$s := -g(x), s \ge 0$$

$$y := H(x), y \in K.$$

$$\nabla f(x) + A^{T} \lambda - M^{T} w = 0$$

$$g(x) \le 0, \lambda \ge 0$$

$$H(x) \in K, w \in K$$

$$g(x).\lambda = 0$$

$$H(x) \circ w = 0$$



# NLP FORM VS. CONIC FORM

Can always write the cone constraint as a general NLP constraint:

$$||u|| \le t \to \sqrt{u_1^2 + u_2^2 + \dots + u_{k-1}^2} \le t$$

- **1** This does not work well in general; constraint is non-differentiable as  $||u|| \to 0$ 
  - It is not uncommon that  $||u|| \to 0$  at the optimal solution
- **2** Can square the constraint, but then it is non-convex and degenerate at the solution if  $||u|| \to 0$
- Can try to smooth or relax/perturb these constraints to avoid these issues, e.g.

$$\sqrt{u_1^2 + u_2^2 + \dots + u_{k-1}^2 + \epsilon^2} \le t$$

I This works better sometimes but is still not robust or nearly as effective as dealing with them directly

# NLP FORM VS. CONIC FORM

# Consider the simple example:

$$\min_{x} 0.5x_1 + x_2$$
  
s.t.  $|x_1| \le x_2$ 

- I The optimal solution is at (0,0)
- NLP form without conic detection can't get dual feasible
- | QCQP form (non-convex):

$$\min_{x} 0.5x_1 + x_2$$
  
s.t.  $x_1^2 \le x_2^2$ ,  $x_2 \ge 0$ 

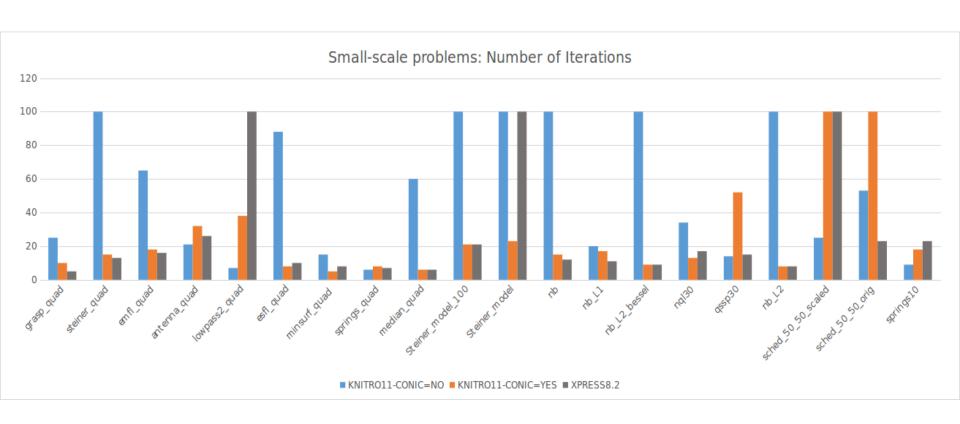
solves in 50 iterations

- Conic formulation solves in 4 iterations
- In fact, development of the conic extension started after having troubles with such a problem
  - Steiner\_model / Steiner\_model\_100 on the next slide



# NLP FORM VS. CONIC FORM

Compare Knitro (with and without special treatment of cone constraints) and Xpress on small SOCP models (iteration comparison)





# KNITRO CONIC SOLVER-MISOCP

- 2 Can utilize Knitro branch-and-bound algorithm to solve mixedinteger SOCP
- 1 ... or more general mixed-integer models with SOC constraints

$$\min_{x,y} f(x,y)$$
s.t.  $||A_i x + b_i|| \le c_i^T x + d_i$ ,  $i=1...$ k
$$h(x,y) = 0$$

$$g(x,y) \le 0$$
 $y \text{ integer}$ 

# **NEW KNITRO 11.0 API**



# **NEW KNITRO 11.0 API – KEY FEATURES**

- Build optimization model piece-by-piece
  - More flexible
  - Easier problem modification
  - More extendable (to multi-objective, statistical learning models, etc.)
- Identify special structures (e.g. linear, quadratic, conic, etc)
  - Identify more problem types (QCQP, SOCP, etc)
  - Potential for more extensive presolve operations
  - Faster (potentially parallel) evaluations of stored structures
- Can combine exact and approximate derivatives

$$\min f(x) + (1-x_0)^2$$

s.t. 
$$x_0x_1 \ge 1$$
  $x_0+x_1^2 \ge 0$ ,  $x_0 \le 0.5$ 

```
\min f(x) + (1 - x_0)^2
s.t. x_0 x_1 \ge 1
x_0 + x_1^2 \ge 0, \qquad x_0 \le 0.5
```

```
// Create a new Knitro solver instance.

KN_new(&kc);

// Add variables and constraints and set their bounds

KN_add_vars(kc, 2, NULL);

KN_set_var_upbnd(kc, 0, 0.5);

KN_add_cons(kc, 2, NULL);

double cLoBnds[2] = {1.0, 0.0};

KN_set_con_lobnds_all(kc, cLoBnds);
```

```
\min f(x) + (1 - x_0)^2
s.t. x_0 x_1 \ge 1
x_0 + x_1^2 \ge 0, \qquad x_0 \le 0.5
```

```
\min f(x) + (1 - x_0)^2
s.t. x_0 x_1 \ge 1
x_0 + x_1^2 \ge 0, \qquad x_0 \le 0.5
```

```
\min f(x) + (1 - x_0)^2
s.t. x_0 x_1 \ge 1
x_0 + x_1^2 \ge 0, \qquad x_0 \le 0.5
```

```
// Pointer to structure holding information for callback CB_context *cb;

// Add a callback function "callbackEvalF" to evaluate the nonlinear // (non-quadratic) part of the objective 
KN_add_eval_callback (kc, KNTRUE, 0, NULL, f(x), &cb);

// Add the constant, linear, and quadratic terms in the objective. 
KN_add_obj_constant(kc, 1.0); 
indexVar = 0; coef = -2.0; 
KN_add_obj_linear_struct(kc, 1, &indexVar, &coef); 
indexVar1 = 1; indexVar2 = 1; coef = 1.0; 
KN add obj quadratic struct(kc, 1, &indevVar1, &indexVar2, &coef);
```

```
\min f(x) + (1 - x_0)^2
s.t. x_0 x_1 \ge 1
x_0 + x_1^2 \ge 0, \qquad x_0 \le 0.5
```

```
// Set the non-default SQP algorithm
KN_set_int_param(kc,KN_PARAM_ALGORITHM, KN_ALG_ACT_SQP);
// Solve the problem.
KN_solve (kc);
// An example of obtaining solution information.
KN_get_solution(kc, &nStatus, &objSol, x, lambda);
// Delete the Knitro solver instance.
KN_free (&kc);
```

# Comparing old API and new API on some large QCQP models

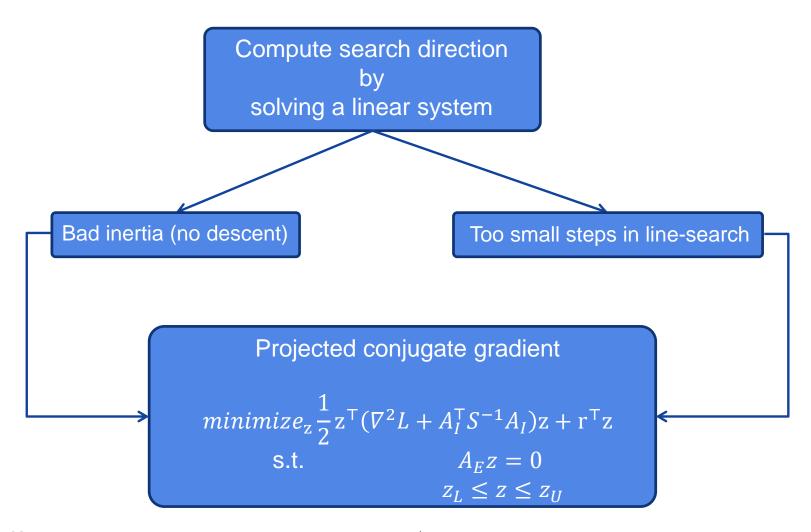
| Problem      | #nnzJ   | #nnzH   | Old API (solve time) | New API (solve time) |
|--------------|---------|---------|----------------------|----------------------|
| qcqp1000-1nc | 5,591   | 83,872  | 33.27                | 27.41                |
| qcqp1000-2c  | 63,139  | 142,386 | 20.19                | 9.20                 |
| qcqp1000-2nc | 63,139  | 131,114 | 17.71                | 8.38                 |
| qcqp1500-1c  | 180,041 | 438,989 | 1322.30              | 393.09               |
| qcqp1500-1nc | 180,041 | 409,820 | 230.93               | 330.52               |
| qcqp500-3c   | 5,685   | 125,086 | 16.30                | 0.71                 |
| qcqp500-3nc  | 5,686   | 125,086 | 17.79                | 0.72                 |
| qcqp750-2c   | 10,792  | 281,514 | 56.37                | 2.21                 |
| qcqp750-2nc  | 10,792  | 281,514 | 55.37                | 2.25                 |

# PRECONDITIONER



# PRECONDITIONING IN KNITRO

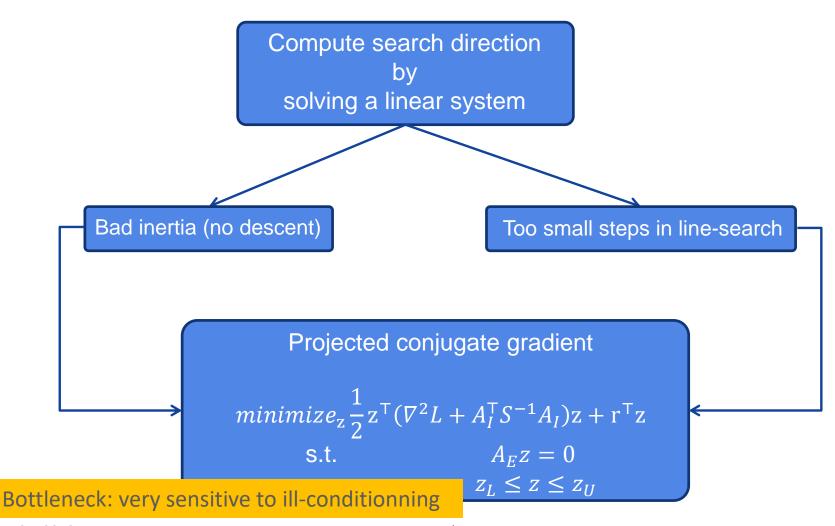
Fallback step in projected conjugate gradient (PCG) with Knitro's interior point





# PRECONDITIONING IN KNITRO

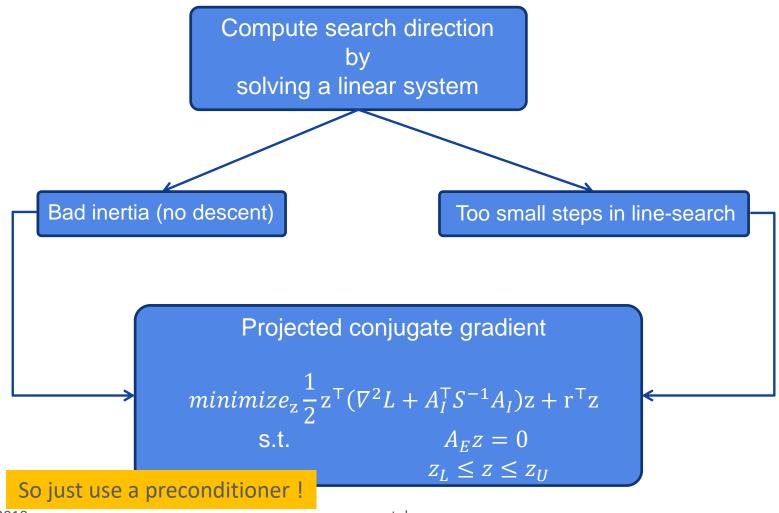
Fallback step in projected conjugate gradient (PCG) with Knitro's interior point





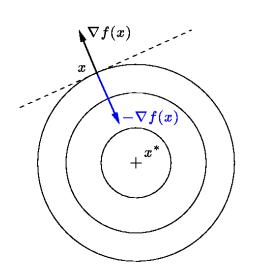
# PRECONDITIONING IN KNITRO

Fallback step in projected conjugate gradient (PCG) with Knitro's interior point



June 27, 2018

www.artelys.com

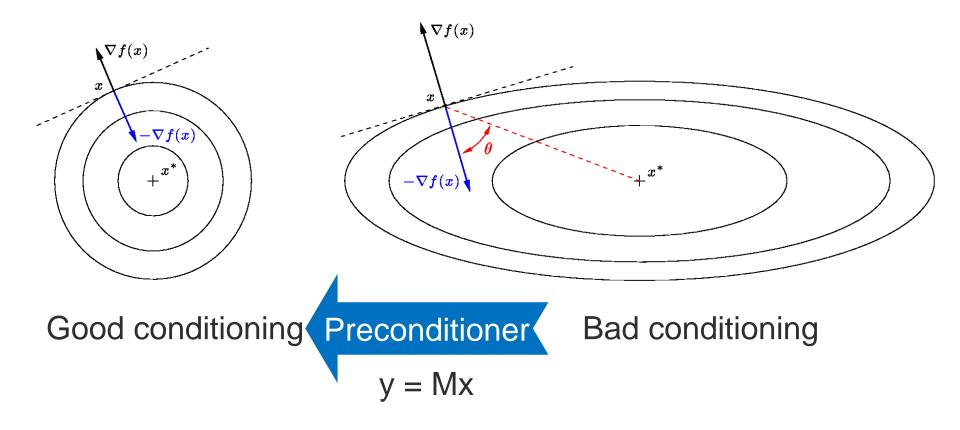


 $-\nabla f(x)$   $+x^*$ 

Good conditioning

Bad conditioning

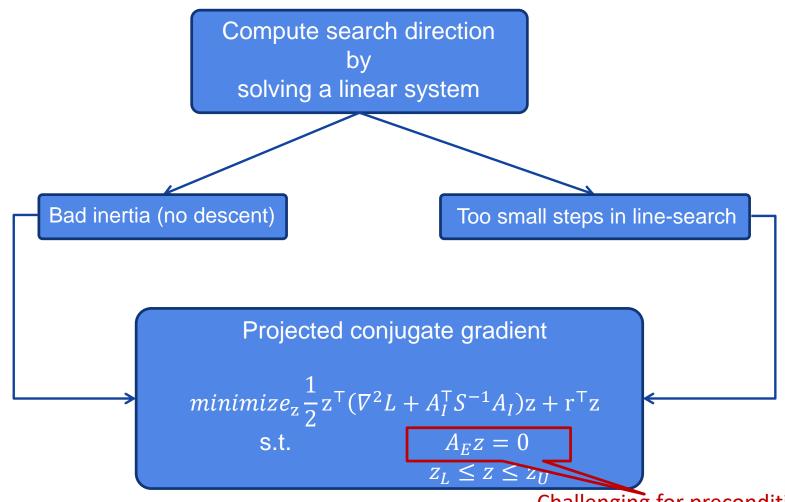
 $\nabla f(x)$ 





# PRECONDITIONING IN KNITRO

Fallback step in projected conjugate gradient (PCG) with Knitro's interior point





# PRECONDITIONER'S MECHANICS

## Incomplete Choleski factorization (icfs module)

$$\nabla_{xx}^2 L + A_I^{\mathsf{T}} S^{-1} \Lambda A_I \approx L L^T$$

# Steps to transform PCG direction so that $A_E z = 0$

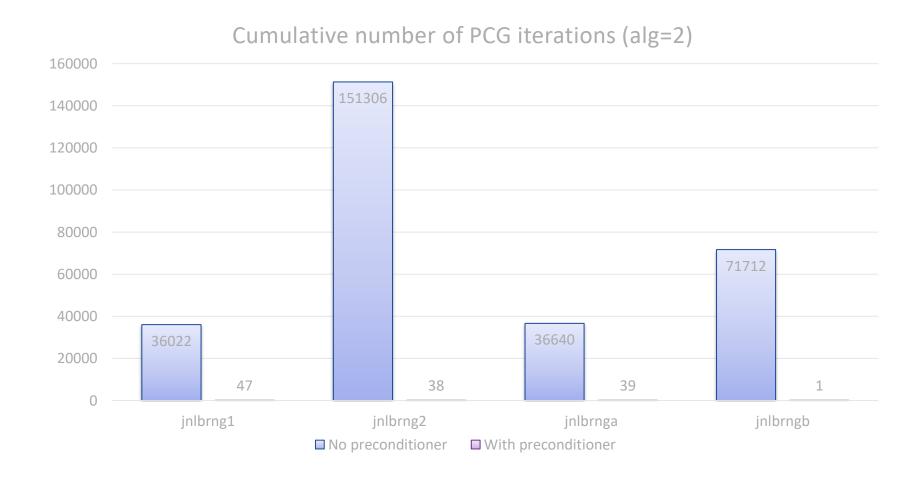
- 1) Compute  $\tilde{\mathbf{r}} \coloneqq L^{-1}r$
- 2) Form the dense matrix  $B := L^{-1}A_E^{\mathsf{T}}$
- 3) Compute  $C := B^{\mathsf{T}}B$
- 4) Solve  $Cw = B^{\mathsf{T}}\tilde{r}$
- 5) Compute  $\tilde{z} = \tilde{r} Bw$
- 6) Backsolve  $z = L^{-T}\tilde{z}$

#### **New Knitro options**

35

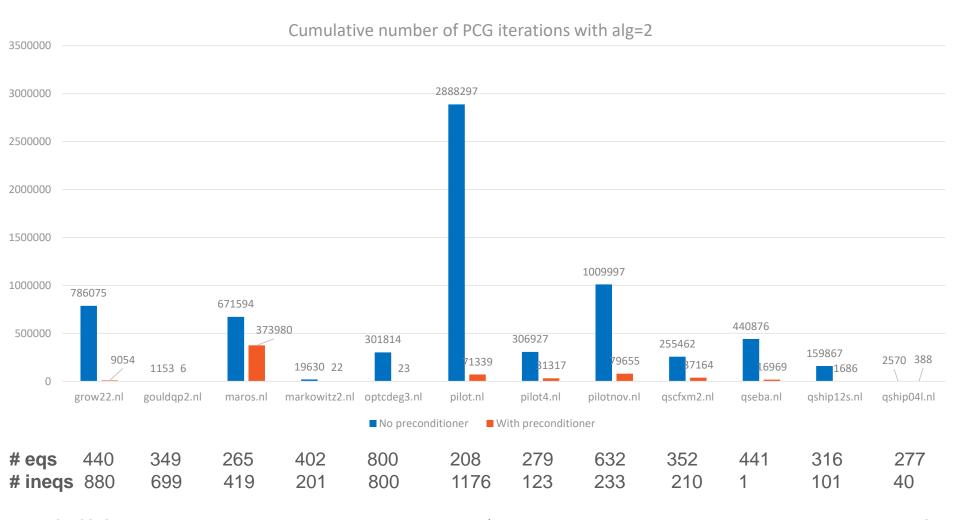


Nonlinear programs with inequality constraints only (alg=2, Knitro PCG)



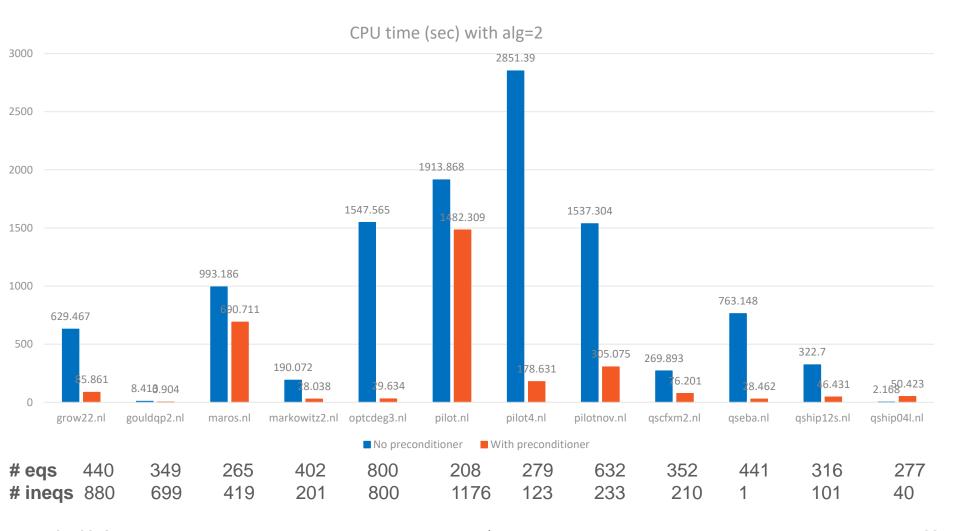


#### Nonlinear programs with equality constraints (alg=2, Knitro PCG)



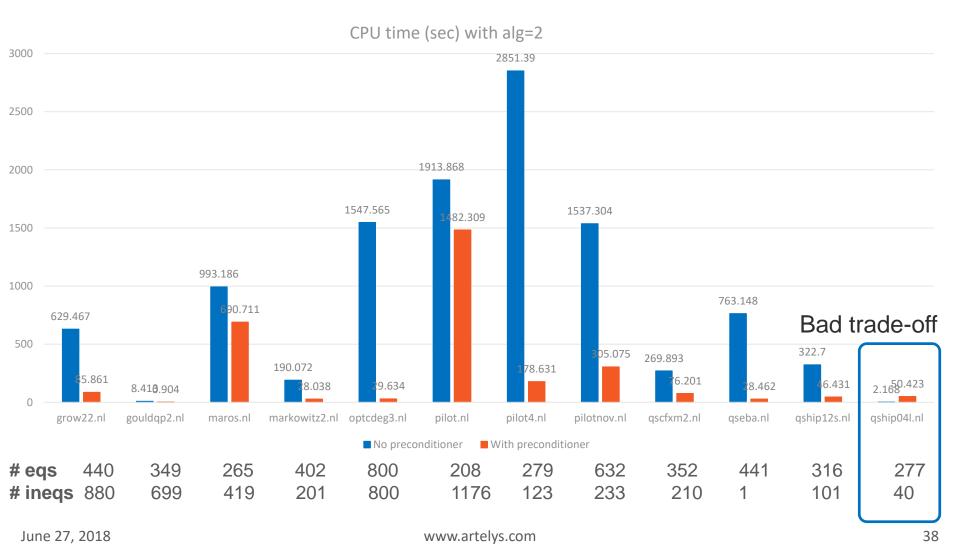


#### Nonlinear programs with equality constraints (alg=2, Knitro PCG)





#### Nonlinear programs with equality constraints (alg=2, Knitro PCG)



# LINEAR SOLVERS



## ■ Artelys | OPTIMIZATION SOLUTIONS LINEAR SOLVER OPTIONS IN ARTELYS KNITRO

- ▲ Knitro algorithms need to solve sparse symmetric indefinite linear systems, Ax=b, where A and b depends on the iteration.
  - Although the factorization is unique, each solver uses a different algorithm to compute it (multifrontal/supernodal; pivoting; etc.)
  - The choice of the linear solver can change the number of iterations taken to solve a problem, and sometimes even the return status
  - There is no linear solver best for all problems
- Artelys Knitro 11.0 allows the use of two more parallel linear solvers

l HSL MA27 sequential

l HSL MA57 sequential

l MKL PARDISO parallel

l HSL MA86 parallel

HSL MA97 parallel; bit-compatible (always give the same answer)

## ■ Artelys | OPTIMIZATION SOLUTIONS LINEAR SOLVER OPTIONS IN ARTELYS KNITRO

- MA57 performs well for small and medium size problems
- ...but it might have no chance in the large scale
  - l Problem MSK\_STEP3

Number of variables 55,163
Number of constraints 108,911
Number of nonzeros in Jacobian 54,330,672
Number of nonzeros in Hessian 3,361,333

MA57 : out of memory

|                           | 4 threads              | 8 threads              | 16 threads             | 30 threads             |
|---------------------------|------------------------|------------------------|------------------------|------------------------|
| MKLPARDISO                |                        |                        |                        |                        |
| # of iterations           | 90                     | 90                     | 90                     | 90                     |
| Total program time (secs) | 4704.27100 ( 14239.626 | 3646.25830 ( 18465.613 | 3158.46362 ( 27331.607 | 3156.07690 ( 49937.773 |
|                           | CPU time)              | CPU time)              | CPU time)              | CPU time)              |
| KKT Factorization         | 3168.19702 / 96        | 2104.03540 / 96        | 1592.80664 / 96        | 1589.04285 / 96        |
| time/count                |                        |                        |                        |                        |
| MA86                      |                        |                        |                        |                        |
| # of iterations           | 90                     | 90                     | 90                     | 90                     |
| Total program time (secs) | 3363.03809 ( 11535.405 | 2370.03833 ( 14391.964 | 2111.79712 ( 23614.680 | 2265.83179 ( 47518.672 |
|                           | CPU time)              | CPU time)              | CPU time)              | CPU time)              |
| KKT Factorization         | 2689.55811 / 90        | 1726.85120 / 90        | 1461.42456 / 90        | 1609.26416 / 90        |
| time/count                |                        |                        |                        |                        |

June 27, 2018 www.artelys.com 41



OPTIMIZATION SOLUTIONS

# Your turn!

Try it and let us know what you think...



# BENCHMARK





# BENCHMARK IMPROVEMENT

#### Old benchmark overview :

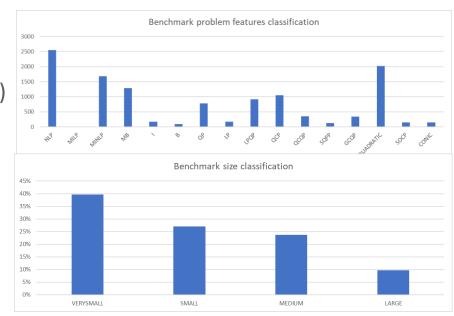
- 1363 instances
- Classified along 40 labels
- Through text lists format : not userfriendly
  - to add tests
  - → to add labels, modify them, ...

#### 4 Current status :

- 5000+ instances, 50+ labels
- Categorical labels (small/medium/large); problem features (MINLP/QCQP/...)
- Standard benchmarks included

  - → GlobalLib-GAMS, MINLPLib2
  - → Pglib-opf (for OPF)
- Database format (Excel..)







# **TEST INTEGRATION**

# New tests integration process :

- l Daily continuous integration

  - □ Comparison to a reference run
  - → In terms of status, obj, cpu, #iters
- Daily tests report
  - → Number of regressions

  - → Trends in the improvement of cpu, obj
  - → Performance profiles in terms of cputime / number of iterations
- Deployment and run on the cluster
  - Use all available resources
  - → 1363 instances benchmark is ran in 1h

