
Stochastic Programming for Hydropower
Operations
Modeling and Algorithms

Martin Biel
KTH - Royal Institute of Technology
JUNE 28, 2018

Motivation

• Simulation of hydro power operations → Decision-support

∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time
• Aim: Provide reliable decision-support in real time

∘ Accurate models: Optimal model reductions
∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

• Simulation of hydro power operations → Decision-support
∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time
• Aim: Provide reliable decision-support in real time

∘ Accurate models: Optimal model reductions
∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

• Simulation of hydro power operations → Decision-support
∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time

• Aim: Provide reliable decision-support in real time
∘ Accurate models: Optimal model reductions
∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

• Simulation of hydro power operations → Decision-support
∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time
• Aim: Provide reliable decision-support in real time

∘ Accurate models: Optimal model reductions
∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

• Simulation of hydro power operations → Decision-support
∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time
• Aim: Provide reliable decision-support in real time

∘ Accurate models: Optimal model reductions

∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

• Simulation of hydro power operations → Decision-support
∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time
• Aim: Provide reliable decision-support in real time

∘ Accurate models: Optimal model reductions
∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

• Simulation of hydro power operations → Decision-support
∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time
• Aim: Provide reliable decision-support in real time

∘ Accurate models: Optimal model reductions
∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

• Simulation of hydro power operations → Decision-support
∘ Price forecasts
∘ Irregular power production: solar and wind
∘ Nuclear power phase-out

• Common: Trade-off between accuracy and computation time
• Aim: Provide reliable decision-support in real time

∘ Accurate models: Optimal model reductions
∘ Fast computations: Scalable algorithms on commodity hardware

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2 / 25

Motivation

Stochastic programming for hydro power operations
• Optimal orders on the day-ahead market
• Maintenance scheduling
• Long-term investments
• Wind/solar uncertainties

Advantages
• Multiple scenarios → More accurate models
• Parallel decomposition → Faster computations

Martin Biel (KTH) Stochastic Programming for Hydropower 3 / 25

Motivation

Stochastic programming for hydro power operations
• Optimal orders on the day-ahead market
• Maintenance scheduling
• Long-term investments
• Wind/solar uncertainties

Advantages
• Multiple scenarios → More accurate models
• Parallel decomposition → Faster computations

Martin Biel (KTH) Stochastic Programming for Hydropower 3 / 25

Contribution

Julia modules
• StochasticPrograms.jl
• LShapedSolvers.jl
• HydroModels.jl

Software Innovations
• Deferred model creation
• Data injection

Martin Biel (KTH) Stochastic Programming for Hydropower 4 / 25

Contribution

Julia modules
• StochasticPrograms.jl
• LShapedSolvers.jl
• HydroModels.jl

Software Innovations
• Deferred model creation
• Data injection

Martin Biel (KTH) Stochastic Programming for Hydropower 4 / 25

Content

• Initial approach

• StochasticProgramming.jl
• LShapedSolvers.jl
• HydroModels.jl
• Final remarks

Martin Biel (KTH) Stochastic Programming for Hydropower 5 / 25

Content

• Initial approach
• StochasticProgramming.jl

• LShapedSolvers.jl
• HydroModels.jl
• Final remarks

Martin Biel (KTH) Stochastic Programming for Hydropower 5 / 25

Content

• Initial approach
• StochasticProgramming.jl
• LShapedSolvers.jl

• HydroModels.jl
• Final remarks

Martin Biel (KTH) Stochastic Programming for Hydropower 5 / 25

Content

• Initial approach
• StochasticProgramming.jl
• LShapedSolvers.jl
• HydroModels.jl

• Final remarks

Martin Biel (KTH) Stochastic Programming for Hydropower 5 / 25

Content

• Initial approach
• StochasticProgramming.jl
• LShapedSolvers.jl
• HydroModels.jl
• Final remarks

Martin Biel (KTH) Stochastic Programming for Hydropower 5 / 25

Initial Approach

• HydroModel
∘ Data
∘ JuMP model

• Julia struct for each model: ShortTerm, DayAhead
• Parallel decomposition: L-shaped on StructJuMP.jl models
• Performance: Solve extended form using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 6 / 25

Initial Approach

• HydroModel
∘ Data
∘ JuMP model

• Julia struct for each model: ShortTerm, DayAhead

• Parallel decomposition: L-shaped on StructJuMP.jl models
• Performance: Solve extended form using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 6 / 25

Initial Approach

• HydroModel
∘ Data
∘ JuMP model

• Julia struct for each model: ShortTerm, DayAhead
• Parallel decomposition: L-shaped on StructJuMP.jl models

• Performance: Solve extended form using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 6 / 25

Initial Approach

• HydroModel
∘ Data
∘ JuMP model

• Julia struct for each model: ShortTerm, DayAhead
• Parallel decomposition: L-shaped on StructJuMP.jl models
• Performance: Solve extended form using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 6 / 25

Initial Approach

function define_structjump_problem(model::DayAheadModel)
model.internalmodels[:structured] = StructuredModel(num_scenarios = numscenarios(model))
params = model.modeldata
..
@variable(internalmodel,xt_i[t = model.hours] >= 0)
..
for s in 1:numscenarios(model)

block = StructuredModel(parent = internalmodel, id = s)
...
@variable(block,Q[p = model.plants, q = model.segments, t = model.hours],

lowerbound = 0,upperbound = params.Q̅ [(p,q)])
@variable(block,S[p = model.plants, t = model.hours] >= 0)
...
@expression(block,value_of_stored_water,

params.λ_f*sum(M[p,hours(model.horizon)]*sum(params.μ[i,1]
for i = params.Qd[p])

for p = model.plants))
Define objective
@objective(block, Max, net_profit + value_of_stored_water)
...
@constraint(block,production[s = model.scenarios, t = model.hours],

H[s,t] == sum(params.μ[p,q]*Q[s,p,q,t]
for p = model.plants, q = model.segments)

)
...

end
end

Martin Biel (KTH) Stochastic Programming for Hydropower 6 / 25

Initial Approach

function define_dep_problem(model::DayAheadModel)
model.internalmodels[:dep] = Model()
params = model.modeldata
...
@variable(internalmodel,xt_i[t = model.hours] >= 0)
...
@variable(block,Q[s = model.scenarios, p = model.plants, t = model.hours],

lowerbound = 0, upperbound = params.Q̅ [(p,q)])
@variable(block,S[s = model.scenarios, p = model.plants, t = model.hours] >= 0)
...
@expression(block,value_of_stored_water,

sum(scenarios[s].π*params.λ_f*sum(M[s,p]*sum(params.μ[i,1]
for i = params.Qd[p])

for p = model.plants)
for s = model.scenarios))

Define objective
@objective(block, Max, net_profit + value_of_stored_water)
...
@constraint(block,production[s = model.scenarios, t = model.hours],

H[s,t] == sum(params.μ[p,q]*Q[s,p,q,t]
for p = model.plants, q = model.segments)

)
...

end

Martin Biel (KTH) Stochastic Programming for Hydropower 6 / 25

Initial Approach - Issues

• A lot of code repetition

• No clearcut way to calculate stochastic measures: EVPI, VSS
• The model creation is somewhat inflexible
• Parallel L-shaped using the Distributed module in Julia…
• …but StructJuMP relies on MPI
• Creating a new hydromodel involves reimplementing a new type

Martin Biel (KTH) Stochastic Programming for Hydropower 7 / 25

Initial Approach - Issues

• A lot of code repetition
• No clearcut way to calculate stochastic measures: EVPI, VSS

• The model creation is somewhat inflexible
• Parallel L-shaped using the Distributed module in Julia…
• …but StructJuMP relies on MPI
• Creating a new hydromodel involves reimplementing a new type

Martin Biel (KTH) Stochastic Programming for Hydropower 7 / 25

Initial Approach - Issues

• A lot of code repetition
• No clearcut way to calculate stochastic measures: EVPI, VSS
• The model creation is somewhat inflexible

• Parallel L-shaped using the Distributed module in Julia…
• …but StructJuMP relies on MPI
• Creating a new hydromodel involves reimplementing a new type

Martin Biel (KTH) Stochastic Programming for Hydropower 7 / 25

Initial Approach - Issues

• A lot of code repetition
• No clearcut way to calculate stochastic measures: EVPI, VSS
• The model creation is somewhat inflexible
• Parallel L-shaped using the Distributed module in Julia…

• …but StructJuMP relies on MPI
• Creating a new hydromodel involves reimplementing a new type

Martin Biel (KTH) Stochastic Programming for Hydropower 7 / 25

Initial Approach - Issues

• A lot of code repetition
• No clearcut way to calculate stochastic measures: EVPI, VSS
• The model creation is somewhat inflexible
• Parallel L-shaped using the Distributed module in Julia…
• …but StructJuMP relies on MPI

• Creating a new hydromodel involves reimplementing a new type

Martin Biel (KTH) Stochastic Programming for Hydropower 7 / 25

Initial Approach - Issues

• A lot of code repetition
• No clearcut way to calculate stochastic measures: EVPI, VSS
• The model creation is somewhat inflexible
• Parallel L-shaped using the Distributed module in Julia…
• …but StructJuMP relies on MPI
• Creating a new hydromodel involves reimplementing a new type

Martin Biel (KTH) Stochastic Programming for Hydropower 7 / 25

New Approach

• StochasticPrograms.jl

∘ Flexible model creation
∘ Parallel capabilities based on the Distributed module
∘ Stochastic programming constructs

• HydroModels.jl

∘ Model creation focused on data and optimization formulation
∘ Efficient model reinitialization
∘ Predefined models

• Short-term production planning
• Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower 8 / 25

New Approach

• StochasticPrograms.jl
∘ Flexible model creation

∘ Parallel capabilities based on the Distributed module
∘ Stochastic programming constructs

• HydroModels.jl

∘ Model creation focused on data and optimization formulation
∘ Efficient model reinitialization
∘ Predefined models

• Short-term production planning
• Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower 8 / 25

New Approach

• StochasticPrograms.jl
∘ Flexible model creation
∘ Parallel capabilities based on the Distributed module

∘ Stochastic programming constructs

• HydroModels.jl

∘ Model creation focused on data and optimization formulation
∘ Efficient model reinitialization
∘ Predefined models

• Short-term production planning
• Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower 8 / 25

New Approach

• StochasticPrograms.jl
∘ Flexible model creation
∘ Parallel capabilities based on the Distributed module
∘ Stochastic programming constructs

• HydroModels.jl

∘ Model creation focused on data and optimization formulation
∘ Efficient model reinitialization
∘ Predefined models

• Short-term production planning
• Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower 8 / 25

New Approach

• StochasticPrograms.jl
∘ Flexible model creation
∘ Parallel capabilities based on the Distributed module
∘ Stochastic programming constructs

• HydroModels.jl
∘ Model creation focused on data and optimization formulation

∘ Efficient model reinitialization
∘ Predefined models

• Short-term production planning
• Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower 8 / 25

New Approach

• StochasticPrograms.jl
∘ Flexible model creation
∘ Parallel capabilities based on the Distributed module
∘ Stochastic programming constructs

• HydroModels.jl
∘ Model creation focused on data and optimization formulation
∘ Efficient model reinitialization

∘ Predefined models
• Short-term production planning
• Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower 8 / 25

New Approach

• StochasticPrograms.jl
∘ Flexible model creation
∘ Parallel capabilities based on the Distributed module
∘ Stochastic programming constructs

• HydroModels.jl
∘ Model creation focused on data and optimization formulation
∘ Efficient model reinitialization
∘ Predefined models

• Short-term production planning
• Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower 8 / 25

StochasticPrograms.jl - Simple Example

minimize
x1,x2∈ℝ

100x1 + 150x2 + 𝔼𝜔[Q(x1, x2, 𝜉)]

s.t. x1 + x2 ≤ 120
x1 ≥ 40
x2 ≥ 20

where
Q(x1, x2, 𝜉) = min

y1,y2∈ℝ
q1(𝜉)y1 + q2(𝜉)y2

s.t. 6y1 + 10y2 ≤ 60x1

8y1 + 5y2 ≤ 80x2

0 ≤ y1 ≤ d1(𝜉)
0 ≤ y2 ≤ d2(𝜉)

Martin Biel (KTH) Stochastic Programming for Hydropower 9 / 25

StochasticPrograms.jl - Simple Example

sp = StochasticProgram(solver=ClpSolver())

@first_stage sp = begin
@variable(model, x₁ >= 40)
@variable(model, x₂ >= 20)
@objective(model, Min, 100*x₁ + 150*x₂)
@constraint(model, x₁+x₂ <= 120)

end

@second_stage sp = begin
@decision x₁ x₂
s = scenario
@variable(model, 0 <= y₁ <= s.d[1])
@variable(model, 0 <= y₂ <= s.d[2])
@objective(model, Min, s.q[1]*y₁ + s.q[2]*y₂)
@constraint(model, 6*y₁ + 10*y₂ <= 60*x₁)
@constraint(model, 8*y₁ + 5*y₂ <= 80*x₂)

end

Martin Biel (KTH) Stochastic Programming for Hydropower 10 / 25

StochasticPrograms.jl - Simple Example

sp = StochasticProgram(solver=ClpSolver())

@first_stage sp = begin
@variable(model, x₁ >= 40)
@variable(model, x₂ >= 20)
@objective(model, Min, 100*x₁ + 150*x₂)
@constraint(model, x₁+x₂ <= 120)

end

@second_stage sp = begin
@decision x₁ x₂
s = scenario
@variable(model, 0 <= y₁ <= s.d[1])
@variable(model, 0 <= y₂ <= s.d[2])
@objective(model, Min, s.q[1]*y₁ + s.q[2]*y₂)
@constraint(model, 6*y₁ + 10*y₂ <= 60*x₁)
@constraint(model, 8*y₁ + 5*y₂ <= 80*x₂)

end

Creates a generator function for the first stage model

Martin Biel (KTH) Stochastic Programming for Hydropower 10 / 25

StochasticPrograms.jl - Simple Example

sp = StochasticProgram(solver=ClpSolver())

@first_stage sp = begin
@variable(model, x₁ >= 40)
@variable(model, x₂ >= 20)
@objective(model, Min, 100*x₁ + 150*x₂)
@constraint(model, x₁+x₂ <= 120)

end

@second_stage sp = begin
@decision x₁ x₂
s = scenario
@variable(model, 0 <= y₁ <= s.d[1])
@variable(model, 0 <= y₂ <= s.d[2])
@objective(model, Min, s.q[1]*y₁ + s.q[2]*y₂)
@constraint(model, 6*y₁ + 10*y₂ <= 60*x₁)
@constraint(model, 8*y₁ + 5*y₂ <= 80*x₂)

end

Creates a generator function for the second stage model

Martin Biel (KTH) Stochastic Programming for Hydropower 10 / 25

StochasticPrograms.jl - Simple Example

sp = StochasticProgram(solver=ClpSolver())

@first_stage sp = begin
@variable(model, x₁ >= 40)
@variable(model, x₂ >= 20)
@objective(model, Min, 100*x₁ + 150*x₂)
@constraint(model, x₁+x₂ <= 120)

end

@second_stage sp = begin
@decision x₁ x₂
s = scenario
@variable(model, 0 <= y₁ <= s.d[1])
@variable(model, 0 <= y₂ <= s.d[2])
@objective(model, Min, s.q[1]*y₁ + s.q[2]*y₂)
@constraint(model, 6*y₁ + 10*y₂ <= 60*x₁)
@constraint(model, 8*y₁ + 5*y₂ <= 80*x₂)

end

Explicitly denote that some variables originate from the first stage

Martin Biel (KTH) Stochastic Programming for Hydropower 10 / 25

StochasticPrograms.jl - Simple Example

sp = StochasticProgram(solver=ClpSolver())

@first_stage sp = begin
@variable(model, x₁ >= 40)
@variable(model, x₂ >= 20)
@objective(model, Min, 100*x₁ + 150*x₂)
@constraint(model, x₁+x₂ <= 120)

end

@second_stage sp = begin
@decision x₁ x₂
s = scenario
@variable(model, 0 <= y₁ <= s.d[1])
@variable(model, 0 <= y₂ <= s.d[2])
@objective(model, Min, s.q[1]*y₁ + s.q[2]*y₂)
@constraint(model, 6*y₁ + 10*y₂ <= 60*x₁)
@constraint(model, 8*y₁ + 5*y₂ <= 80*x₂)

end

Injection point for scenario data

Martin Biel (KTH) Stochastic Programming for Hydropower 10 / 25

StochasticPrograms.jl - Simple Example

struct SimpleScenario <: AbstractScenarioData
p::Float64
d::Vector{Float64}
q::Vector{Float64}

end

StochasticPrograms.probability(s::SimpleScenario) = s.p

Martin Biel (KTH) Stochastic Programming for Hydropower 11 / 25

StochasticPrograms.jl - Simple Example

struct SimpleScenario <: AbstractScenarioData
p::Float64
d::Vector{Float64}
q::Vector{Float64}

end

StochasticPrograms.probability(s::SimpleScenario) = s.p

Add two scenarios to the stochastic program

s1 = SimpleScenario(0.4,[500.0,100],[-24.0,-28])

s2 = SimpleScenario(0.6,[300.0,300],[-28.0,-32])

append!(sp,[s1,s2])

Martin Biel (KTH) Stochastic Programming for Hydropower 11 / 25

StochasticPrograms.jl - Simple Example

print(sp)

Martin Biel (KTH) Stochastic Programming for Hydropower 11 / 25

StochasticPrograms.jl - Simple Example

print(sp)

First-stage
==============
Min 100 x₁ + 150 x₂
Subject to
x₁ + x₂ ≤ 120
x₁ ≥ 40
x₂ ≥ 20

Second-stage
==============
Subproblem 1:
Min -24 y₁ - 28 y₂
Subject to
6 y₁ + 10 y₂ - 60 x₁ ≤ 0
8 y₁ + 5 y₂ - 80 x₂ ≤ 0
0 ≤ y₁ ≤ 500
0 ≤ y₂ ≤ 100

Subproblem 2:
Min -28 y₁ - 32 y₂
Subject to
6 y₁ + 10 y₂ - 60 x₁ ≤ 0
8 y₁ + 5 y₂ - 80 x₂ ≤ 0
0 ≤ y₁ ≤ 300
0 ≤ y₂ ≤ 300

Martin Biel (KTH) Stochastic Programming for Hydropower 11 / 25

Implementation Details

Deferred model creation

• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly

• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions

• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks

Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection

• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords

• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications

• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation

• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation

• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation
• JuMP models are not created instantly
• Model definitions are stored in generating lambda functions
• These model recipes are then used as building blocks
Data injection
• The generating functions contain certain placeholders keywords
• Upon model creation, the keywords contain the required data fields

Implications
• Flexible model creation and reformulation
• Efficient parallel implementation
• Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize
x∈ℝn

cT x + 𝔼𝜔[Q(x, 𝜉(𝜔))]

s.t. Ax = b

dep = DEP(sp)

Minimization problem with:
* 5 linear constraints
* 6 variables
Solver is ClpMathProg

• First stage generator
• Second stage generator on all available scenarios
• Connections possible due to the @decision annotation
• DEP model is cached internally until new scenarios are added

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize
x∈ℝn

cT x + 𝔼𝜔[Q(x, 𝜉(𝜔))]

s.t. Ax = b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints
* 6 variables
Solver is ClpMathProg

• First stage generator
• Second stage generator on all available scenarios
• Connections possible due to the @decision annotation
• DEP model is cached internally until new scenarios are added

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize
x∈ℝn

cT x + 𝔼𝜔[Q(x, 𝜉(𝜔))]

s.t. Ax = b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints
* 6 variables
Solver is ClpMathProg

• First stage generator

• Second stage generator on all available scenarios
• Connections possible due to the @decision annotation
• DEP model is cached internally until new scenarios are added

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize
x∈ℝn

cT x + 𝔼𝜔[Q(x, 𝜉(𝜔))]

s.t. Ax = b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints
* 6 variables
Solver is ClpMathProg

• First stage generator
• Second stage generator on all available scenarios

• Connections possible due to the @decision annotation
• DEP model is cached internally until new scenarios are added

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize
x∈ℝn

cT x + 𝔼𝜔[Q(x, 𝜉(𝜔))]

s.t. Ax = b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints
* 6 variables
Solver is ClpMathProg

• First stage generator
• Second stage generator on all available scenarios
• Connections possible due to the @decision annotation

• DEP model is cached internally until new scenarios are added

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize
x∈ℝn

cT x + 𝔼𝜔[Q(x, 𝜉(𝜔))]

s.t. Ax = b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints
* 6 variables
Solver is ClpMathProg

• First stage generator
• Second stage generator on all available scenarios
• Connections possible due to the @decision annotation
• DEP model is cached internally until new scenarios are added

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

print(dep)

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

print(dep)

Min 100 x₁ + 150 x₂ - 9.6 y₁_1 - 11.2 y₂_1 - 16.8 y₁_2 - 19.2 y₂_2
Subject to
x₁ + x₂ ≤ 120
6 y₁_1 + 10 y₂_1 - 60 x₁ ≤ 0
8 y₁_1 + 5 y₂_1 - 80 x₂ ≤ 0
6 y₁_2 + 10 y₂_2 - 60 x₁ ≤ 0
8 y₁_2 + 5 y₂_2 - 80 x₂ ≤ 0
x₁ ≥ 40
x₂ ≥ 20
0 ≤ y₁_1 ≤ 500
0 ≤ y₂_1 ≤ 100
0 ≤ y₁_2 ≤ 300
0 ≤ y₂_2 ≤ 300

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Solving Models

• Extended form
solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

• L-shaped
solve(sp,solver=LShapedSolver(:ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)
Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal

• Convenience function (Value of the recourse problem)
VRP(sp,solver=ClpSolver())
-855.83

Martin Biel (KTH) Stochastic Programming for Hydropower 14 / 25

StochasticPrograms.jl - Solving Models

• Extended form
solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

• L-shaped
solve(sp,solver=LShapedSolver(:ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)
Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal

• Convenience function (Value of the recourse problem)
VRP(sp,solver=ClpSolver())
-855.83

Martin Biel (KTH) Stochastic Programming for Hydropower 14 / 25

StochasticPrograms.jl - Solving Models

• Extended form
solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

• L-shaped
solve(sp,solver=LShapedSolver(:ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)
Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal

• Convenience function (Value of the recourse problem)
VRP(sp,solver=ClpSolver())
-855.83

Martin Biel (KTH) Stochastic Programming for Hydropower 14 / 25

StochasticPrograms.jl - Solving Models

• Extended form
solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

• L-shaped
solve(sp,solver=LShapedSolver(:ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)
Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal

• Convenience function (Value of the recourse problem)
VRP(sp,solver=ClpSolver())
-855.83

Martin Biel (KTH) Stochastic Programming for Hydropower 14 / 25

StochasticPrograms.jl - Wait-And-See Models

minimize
x∈ℝn

cT x + Q(x, ̃𝜉)

s.t. Ax = b
x ≥ 0

for given ̃𝜉

ws = WS(sp,s1)
Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

• First stage generator
• Second stage generator on the given scenario

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Wait-And-See Models

minimize
x∈ℝn

cT x + Q(x, ̃𝜉)

s.t. Ax = b
x ≥ 0

for given ̃𝜉
ws = WS(sp,s1)
Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

• First stage generator
• Second stage generator on the given scenario

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Wait-And-See Models

minimize
x∈ℝn

cT x + Q(x, ̃𝜉)

s.t. Ax = b
x ≥ 0

for given ̃𝜉
ws = WS(sp,s1)
Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

• First stage generator

• Second stage generator on the given scenario

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Wait-And-See Models

minimize
x∈ℝn

cT x + Q(x, ̃𝜉)

s.t. Ax = b
x ≥ 0

for given ̃𝜉
ws = WS(sp,s1)
Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

• First stage generator
• Second stage generator on the given scenario

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Wait-And-See Models

print(ws)

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Wait-And-See Models

print(ws)

Min 100 x₁ + 150 x₂ - 24 y₁ - 28 y₂
Subject to
x₁ + x₂ ≤ 120
6 y₁ + 10 y₂ - 60 x₁ ≤ 0
8 y₁ + 5 y₂ - 80 x₂ ≤ 0
x₁ ≥ 40
x₂ ≥ 20
0 ≤ y₁ ≤ 500
0 ≤ y₂ ≤ 100

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Expected Value Problems

minimize
x∈ℝn

cT x + Q(x, ̄𝜉)

s.t. Ax = b
x ≥ 0

where

̄𝜉 = 𝔼𝜔[𝜉(𝜔)]

Must be possible to take expectation over scenarios
function expected(scenarios::Vector{SimpleScenario})

return SimpleScenario(sum([s.p for s in scenarios]),
sum([s.p*s.d for s in scenarios]),
sum([s.p*s.q for s in scenarios]))

end

Martin Biel (KTH) Stochastic Programming for Hydropower 16 / 25

StochasticPrograms.jl - Expected Value Problems

minimize
x∈ℝn

cT x + Q(x, ̄𝜉)

s.t. Ax = b
x ≥ 0

where

̄𝜉 = 𝔼𝜔[𝜉(𝜔)]

Must be possible to take expectation over scenarios
function expected(scenarios::Vector{SimpleScenario})

return SimpleScenario(sum([s.p for s in scenarios]),
sum([s.p*s.d for s in scenarios]),
sum([s.p*s.q for s in scenarios]))

end

Martin Biel (KTH) Stochastic Programming for Hydropower 16 / 25

StochasticPrograms.jl - Expected Value Problems

evp = EVP(sp)
Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

print(evp)

Martin Biel (KTH) Stochastic Programming for Hydropower 16 / 25

StochasticPrograms.jl - Expected Value Problems

evp = EVP(sp)
Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

print(evp)

Min 100 x₁ + 150 x₂ - 26.4 y₁ - 30.4 y₂
Subject to
x₁ + x₂ ≤ 120
6 y₁ + 10 y₂ - 60 x₁ ≤ 0
8 y₁ + 5 y₂ - 80 x₂ ≤ 0
x₁ ≥ 40
x₂ ≥ 20
0 ≤ y₁ ≤ 380
0 ≤ y₂ ≤ 220

Martin Biel (KTH) Stochastic Programming for Hydropower 16 / 25

StochasticPrograms.jl - Decision Evaulation

cT ̂x + 𝔼𝜔[Q(̂x, 𝜉(𝜔))]

x̂ = [50,50];

eval_decision(sp,x̂ ,solver=ClpSolver())
356.0

• Create first stage variables using generator
• Fixate them to the given values
• Generate the second stage problems
• Again, linking handled through @decision

• Solve resulting JuMP model

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

cT ̂x + 𝔼𝜔[Q(̂x, 𝜉(𝜔))]
x̂ = [50,50];

eval_decision(sp,x̂ ,solver=ClpSolver())
356.0

• Create first stage variables using generator

• Fixate them to the given values
• Generate the second stage problems
• Again, linking handled through @decision

• Solve resulting JuMP model

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

cT ̂x + 𝔼𝜔[Q(̂x, 𝜉(𝜔))]
x̂ = [50,50];

eval_decision(sp,x̂ ,solver=ClpSolver())
356.0

• Create first stage variables using generator
• Fixate them to the given values

• Generate the second stage problems
• Again, linking handled through @decision

• Solve resulting JuMP model

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

cT ̂x + 𝔼𝜔[Q(̂x, 𝜉(𝜔))]
x̂ = [50,50];

eval_decision(sp,x̂ ,solver=ClpSolver())
356.0

• Create first stage variables using generator
• Fixate them to the given values
• Generate the second stage problems

• Again, linking handled through @decision

• Solve resulting JuMP model

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

cT ̂x + 𝔼𝜔[Q(̂x, 𝜉(𝜔))]
x̂ = [50,50];

eval_decision(sp,x̂ ,solver=ClpSolver())
356.0

• Create first stage variables using generator
• Fixate them to the given values
• Generate the second stage problems
• Again, linking handled through @decision

• Solve resulting JuMP model

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

cT ̂x + 𝔼𝜔[Q(̂x, 𝜉(𝜔))]
x̂ = [50,50];

eval_decision(sp,x̂ ,solver=ClpSolver())
356.0

• Create first stage variables using generator
• Fixate them to the given values
• Generate the second stage problems
• Again, linking handled through @decision

• Solve resulting JuMP model

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Stochastic Measures

• Expected value of using the expected solution (EEV)
EEV(sp,solver=ClpSolver())
-568.92

• Expected wait-and-see solution (EWS)
EWS(sp,solver=ClpSolver())
-1518.75

• Expected value of perfect information (EVPI = VRP - EWS)
EVPI(sp,solver=ClpSolver())
662.92

• Value of the stochastic solution (VSS = EEV - VRP)
VSS(sp,solver=ClpSolver())
286.92

Many of the required calculations are embarassingly parallel

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

• Expected value of using the expected solution (EEV)
EEV(sp,solver=ClpSolver())
-568.92

• Expected wait-and-see solution (EWS)
EWS(sp,solver=ClpSolver())
-1518.75

• Expected value of perfect information (EVPI = VRP - EWS)
EVPI(sp,solver=ClpSolver())
662.92

• Value of the stochastic solution (VSS = EEV - VRP)
VSS(sp,solver=ClpSolver())
286.92

Many of the required calculations are embarassingly parallel

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

• Expected value of using the expected solution (EEV)
EEV(sp,solver=ClpSolver())
-568.92

• Expected wait-and-see solution (EWS)
EWS(sp,solver=ClpSolver())
-1518.75

• Expected value of perfect information (EVPI = VRP - EWS)
EVPI(sp,solver=ClpSolver())
662.92

• Value of the stochastic solution (VSS = EEV - VRP)
VSS(sp,solver=ClpSolver())
286.92

Many of the required calculations are embarassingly parallel

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

• Expected value of using the expected solution (EEV)
EEV(sp,solver=ClpSolver())
-568.92

• Expected wait-and-see solution (EWS)
EWS(sp,solver=ClpSolver())
-1518.75

• Expected value of perfect information (EVPI = VRP - EWS)
EVPI(sp,solver=ClpSolver())
662.92

• Value of the stochastic solution (VSS = EEV - VRP)
VSS(sp,solver=ClpSolver())
286.92

Many of the required calculations are embarassingly parallel

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

• Expected value of using the expected solution (EEV)
EEV(sp,solver=ClpSolver())
-568.92

• Expected wait-and-see solution (EWS)
EWS(sp,solver=ClpSolver())
-1518.75

• Expected value of perfect information (EVPI = VRP - EWS)
EVPI(sp,solver=ClpSolver())
662.92

• Value of the stochastic solution (VSS = EEV - VRP)
VSS(sp,solver=ClpSolver())
286.92

Many of the required calculations are embarassingly parallel
Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

LShapedSolvers.jl

L-shaped algorithm variants
• L-shaped [Van Slyke,Wets]
• Multicut L-shaped [Birge,Louveaux]
• Regularized decomposition [Ruszczyński]
• Trust-region L-shaped [Linderoth,Wright]
• Level-set [Fábián,Szőke]

Martin Biel (KTH) Stochastic Programming for Hydropower 19 / 25

LShapedSolvers.jl

• L-shaped variants
1. L-shaped with multiple cuts (default): LShapedSolver(:ls)
2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)
4. L-shaped with level sets: LShapedSolver(:lv)

• Distributed L-shaped variants
1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
2. Distributed regularized L-shaped: LShapedSolver(:drd)
3. Distributed L-shaped with trust region: LShapedSolver(:dtr)
4. Distributed L-shaped with level sets: LShapedSolver(:dlv)

• Trait based implementation. Every solver is a combination of a:
∘ Regularization trait
∘ Parallelization trait

• Subproblems are solved using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

LShapedSolvers.jl

• L-shaped variants
1. L-shaped with multiple cuts (default): LShapedSolver(:ls)
2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)
4. L-shaped with level sets: LShapedSolver(:lv)

• Distributed L-shaped variants
1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
2. Distributed regularized L-shaped: LShapedSolver(:drd)
3. Distributed L-shaped with trust region: LShapedSolver(:dtr)
4. Distributed L-shaped with level sets: LShapedSolver(:dlv)

• Trait based implementation. Every solver is a combination of a:
∘ Regularization trait
∘ Parallelization trait

• Subproblems are solved using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

LShapedSolvers.jl

• L-shaped variants
1. L-shaped with multiple cuts (default): LShapedSolver(:ls)
2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)
4. L-shaped with level sets: LShapedSolver(:lv)

• Distributed L-shaped variants
1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
2. Distributed regularized L-shaped: LShapedSolver(:drd)
3. Distributed L-shaped with trust region: LShapedSolver(:dtr)
4. Distributed L-shaped with level sets: LShapedSolver(:dlv)

• Trait based implementation. Every solver is a combination of a:
∘ Regularization trait
∘ Parallelization trait

• Subproblems are solved using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

LShapedSolvers.jl

• L-shaped variants
1. L-shaped with multiple cuts (default): LShapedSolver(:ls)
2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)
4. L-shaped with level sets: LShapedSolver(:lv)

• Distributed L-shaped variants
1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
2. Distributed regularized L-shaped: LShapedSolver(:drd)
3. Distributed L-shaped with trust region: LShapedSolver(:dtr)
4. Distributed L-shaped with level sets: LShapedSolver(:dlv)

• Trait based implementation. Every solver is a combination of a:
∘ Regularization trait
∘ Parallelization trait

• Subproblems are solved using MathProgBase solvers
Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

HydroModels.jl

• Also based on deferred model creation and data injection

• The user creates a model recipe using the @hydromodel macro

Creating a Planning Problem
• Define model indices
• Define model data
• Define modelindices(::AbstractHydroModelData, ::Horizon, args...)

• Define optimization problem

Data injection keywords
• horizon: the time horizon if the model
• indices: structure with model indices
• data: structure with model data

Martin Biel (KTH) Stochastic Programming for Hydropower 21 / 25

HydroModels.jl

• Also based on deferred model creation and data injection
• The user creates a model recipe using the @hydromodel macro

Creating a Planning Problem
• Define model indices
• Define model data
• Define modelindices(::AbstractHydroModelData, ::Horizon, args...)

• Define optimization problem

Data injection keywords
• horizon: the time horizon if the model
• indices: structure with model indices
• data: structure with model data

Martin Biel (KTH) Stochastic Programming for Hydropower 21 / 25

HydroModels.jl

• Also based on deferred model creation and data injection
• The user creates a model recipe using the @hydromodel macro

Creating a Planning Problem
• Define model indices
• Define model data
• Define modelindices(::AbstractHydroModelData, ::Horizon, args...)

• Define optimization problem

Data injection keywords
• horizon: the time horizon if the model
• indices: structure with model indices
• data: structure with model data

Martin Biel (KTH) Stochastic Programming for Hydropower 21 / 25

HydroModels.jl

• Also based on deferred model creation and data injection
• The user creates a model recipe using the @hydromodel macro

Creating a Planning Problem
• Define model indices
• Define model data
• Define modelindices(::AbstractHydroModelData, ::Horizon, args...)

• Define optimization problem

Data injection keywords
• horizon: the time horizon if the model
• indices: structure with model indices
• data: structure with model data

Martin Biel (KTH) Stochastic Programming for Hydropower 21 / 25

HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours::Vector{Int}
plants::Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata::HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
λ::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon::Horizon)
hours = collect(1:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)

error("No plants in data")
end
return SimpleShortTermIndices(hours, plants)

end

Define the required model indices
Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours::Vector{Int}
plants::Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata::HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
λ::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon::Horizon)
hours = collect(1:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)

error("No plants in data")
end
return SimpleShortTermIndices(hours, plants)

end

Define data structure that should be available in the model
Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours::Vector{Int}
plants::Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata::HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
λ::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon::Horizon)
hours = collect(1:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)

error("No plants in data")
end
return SimpleShortTermIndices(hours, plants)

end

Create model indices based on given data and time horizon
Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Simple Example

@hydromodel Deterministic SimpleShortTerm = begin
...
hours = indices.hours
plants = indices.plants
...
hdata = data.hydrodata
D = data.D
λ = data.λ
...
@variable(model, H[t = hours] >= 0) # Production each hour
...
@expression(model, value_of_stored_water,

0.98*mean(λ)*sum(M[p,24]*sum(hdata[i].μ[1]
for i = hdata.Qd[p])

for p = plants))
@objective(model, Max, net_profit + value_of_stored_water)
...
@constraint(model, load_constraint[t = hours],

H[t] + Hp[t] - Hs[t] == D[t])
...

end

Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Simple Example

simple_model = SimpleShortTermModel(Day(),data)

Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Not yet planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Simple Example

simple_model = SimpleShortTermModel(Day(),data)

Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Not yet planned

plan!(simple_model, optimsolver = CbcSolver())

Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Optimally planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Simple Example

reinitialize!(simple_model,Week(),data)

Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 168 hour horizon (1 week)

Not yet planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Simple Example

reinitialize!(simple_model,Week(),data)

Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 168 hour horizon (1 week)

Not yet planned

plan!(simple_model, optimsolver = CbcSolver())

Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 168 hour horizon (1 week)

Optimally planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 / 25

HydroModels.jl - Day-Ahead Model

• HydroModels.jl model implemented using StochasticPrograms.jl

• Determine optimal order strategies on day-ahead electricity markets
• Small benchmark

∘ 257 Swedish power stations
∘ 20 Price curve scenarios from the NordPool market
∘ 748042 variables and 376700 constraints in the extended form

• Results
∘ Gurobi on extended form: 58.2 seconds (+ 9.2s for DEP generation)
∘ Distributed L-shaped: 31.5 seconds
∘ Distributed L-shaped with tuned trust-region: 26.7 seconds

Martin Biel (KTH) Stochastic Programming for Hydropower 23 / 25

HydroModels.jl - Day-Ahead Model

• HydroModels.jl model implemented using StochasticPrograms.jl
• Determine optimal order strategies on day-ahead electricity markets

• Small benchmark
∘ 257 Swedish power stations
∘ 20 Price curve scenarios from the NordPool market
∘ 748042 variables and 376700 constraints in the extended form

• Results
∘ Gurobi on extended form: 58.2 seconds (+ 9.2s for DEP generation)
∘ Distributed L-shaped: 31.5 seconds
∘ Distributed L-shaped with tuned trust-region: 26.7 seconds

Martin Biel (KTH) Stochastic Programming for Hydropower 23 / 25

HydroModels.jl - Day-Ahead Model

• HydroModels.jl model implemented using StochasticPrograms.jl
• Determine optimal order strategies on day-ahead electricity markets
• Small benchmark

∘ 257 Swedish power stations
∘ 20 Price curve scenarios from the NordPool market
∘ 748042 variables and 376700 constraints in the extended form

• Results
∘ Gurobi on extended form: 58.2 seconds (+ 9.2s for DEP generation)
∘ Distributed L-shaped: 31.5 seconds
∘ Distributed L-shaped with tuned trust-region: 26.7 seconds

Martin Biel (KTH) Stochastic Programming for Hydropower 23 / 25

HydroModels.jl - Day-Ahead Model

• HydroModels.jl model implemented using StochasticPrograms.jl
• Determine optimal order strategies on day-ahead electricity markets
• Small benchmark

∘ 257 Swedish power stations
∘ 20 Price curve scenarios from the NordPool market
∘ 748042 variables and 376700 constraints in the extended form

• Results
∘ Gurobi on extended form: 58.2 seconds (+ 9.2s for DEP generation)
∘ Distributed L-shaped: 31.5 seconds
∘ Distributed L-shaped with tuned trust-region: 26.7 seconds

Martin Biel (KTH) Stochastic Programming for Hydropower 23 / 25

Final Remarks - Outlook on Future Work

• StochasticPrograms.jl
∘ Sampling
∘ Multistage models
∘ Progressive hedging solver

• HydroModels.jl
∘ Implement more models of hydropower operations

• LShapedSolvers.jl
∘ Algorithmic improvements
∘ Hardware acceleration
∘ Support integer problems

Martin Biel (KTH) Stochastic Programming for Hydropower 24 / 25

Final Remarks - Outlook on Future Work

• StochasticPrograms.jl
∘ Sampling
∘ Multistage models
∘ Progressive hedging solver

• HydroModels.jl
∘ Implement more models of hydropower operations

• LShapedSolvers.jl
∘ Algorithmic improvements
∘ Hardware acceleration
∘ Support integer problems

Martin Biel (KTH) Stochastic Programming for Hydropower 24 / 25

Final Remarks - Outlook on Future Work

• StochasticPrograms.jl
∘ Sampling
∘ Multistage models
∘ Progressive hedging solver

• HydroModels.jl
∘ Implement more models of hydropower operations

• LShapedSolvers.jl
∘ Algorithmic improvements
∘ Hardware acceleration
∘ Support integer problems

Martin Biel (KTH) Stochastic Programming for Hydropower 24 / 25

Final Remarks - Summary

• Stochastic programming for hydropower operations in Julia
∘ StochasticPrograms.jl
∘ LShapedSolvers.jl
∘ HydroModels.jl

• Software innovations
∘ Deferred model creation
∘ Data injection

• Disclaimer: Not updated for MathOptInterface and JuMP 0.19
• All packages are available on Github:

∘ https://github.com/martinbiel/StochasticPrograms.jl
∘ https://github.com/martinbiel/LShapedSolvers.jl
∘ https://github.com/martinbiel/HydroModels.jl

Feedback appreciated!

Martin Biel (KTH) Stochastic Programming for Hydropower 25 / 25

Final Remarks - Summary

• Stochastic programming for hydropower operations in Julia
∘ StochasticPrograms.jl
∘ LShapedSolvers.jl
∘ HydroModels.jl

• Software innovations
∘ Deferred model creation
∘ Data injection

• Disclaimer: Not updated for MathOptInterface and JuMP 0.19
• All packages are available on Github:

∘ https://github.com/martinbiel/StochasticPrograms.jl
∘ https://github.com/martinbiel/LShapedSolvers.jl
∘ https://github.com/martinbiel/HydroModels.jl

Feedback appreciated!

Martin Biel (KTH) Stochastic Programming for Hydropower 25 / 25

Final Remarks - Summary

• Stochastic programming for hydropower operations in Julia
∘ StochasticPrograms.jl
∘ LShapedSolvers.jl
∘ HydroModels.jl

• Software innovations
∘ Deferred model creation
∘ Data injection

• Disclaimer: Not updated for MathOptInterface and JuMP 0.19

• All packages are available on Github:
∘ https://github.com/martinbiel/StochasticPrograms.jl
∘ https://github.com/martinbiel/LShapedSolvers.jl
∘ https://github.com/martinbiel/HydroModels.jl

Feedback appreciated!

Martin Biel (KTH) Stochastic Programming for Hydropower 25 / 25

Final Remarks - Summary

• Stochastic programming for hydropower operations in Julia
∘ StochasticPrograms.jl
∘ LShapedSolvers.jl
∘ HydroModels.jl

• Software innovations
∘ Deferred model creation
∘ Data injection

• Disclaimer: Not updated for MathOptInterface and JuMP 0.19
• All packages are available on Github:

∘ https://github.com/martinbiel/StochasticPrograms.jl
∘ https://github.com/martinbiel/LShapedSolvers.jl
∘ https://github.com/martinbiel/HydroModels.jl

Feedback appreciated!
Martin Biel (KTH) Stochastic Programming for Hydropower 25 / 25

