Systematically building mixed-integer programming formulations using JuMP and Julia

Joey Huchette

MIT (three weeks ago)
Google (in three weeks)
??? (right now)

June 27, 2018

Motivating example: The transportation problem

- How do I route natural gas from processing facilities (S) to distribution centers (D) while minimizing transportation costs?

- Network flow problem on a bipartite graph

Motivating example: The transportation problem

- Cost $=$ linear function over flow on each arc (fixed unit costs)

$$
\begin{array}{lll}
\min _{x} & \sum_{i \in S} \sum_{j \in D} c_{i, j} x_{i, j} & \\
\text { s.t. } & \sum_{j \in D} x_{i, j}=s_{i} & \forall i \in S \\
& \sum_{i \in S} x_{i, j}=d_{j} & \forall j \in D \\
& x_{i, j} \geq 0 \quad \forall i \in S, j \in D
\end{array}
$$

- Linear optimization problem (with specialized algorithms)

Motivating example: The transportation problem

- Cost $=$ concave function over flow on each arc (economies of scale)

$$
\begin{array}{lll}
\min _{x} & \sum_{i \in S} \sum_{j \in D} f_{i, j}\left(x_{i, j}\right) & \\
\text { s.t. } & \sum_{j \in D} x_{i, j}=s_{i} \quad \forall i \in S \\
& \sum_{i \in S} x_{i, j}=d_{j} \quad \forall j \in D \\
& x_{i, j} \geq 0 \quad \forall i \in S, j \in D
\end{array}
$$

- How do we solve this nonconvex optimization problem?

Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

$$
\boldsymbol{g r}(f)=\{(x, f(x)): x \in D\}
$$

Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

$$
\begin{array}{ll}
& \operatorname{gr}(f)=\{(x, f(x)): x \in D\} \\
\min _{x} & \sum_{i \in S} \sum_{j \in D} f_{i, j}\left(x_{i, j}\right) \\
\text { s.t. } & \sum_{j \in D} x_{i, j}=s_{i} \quad \forall i \in S \\
& \sum_{i \in S} x_{i, j}=d_{j} \quad \forall j \in D \\
& x_{i, j} \geq 0 \quad \forall i \in S, j \in D
\end{array}
$$

Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

$$
\begin{array}{lll}
& \operatorname{gr}(f)=\{(x, f(x)): x \in D\} \\
\min _{x} & \sum_{i \in S} \sum_{j \in D} y_{i, j} \\
\text { s.t. } & \sum_{j \in D} x_{i, j}=s_{i} & \forall i \in S \\
& \sum_{i \in S} x_{i, j}=d_{j} & \forall j \in D \\
& x_{i, j} \geq 0 & \forall i \in S, j \in D \\
& \left(x_{i, j}, y_{i, j}\right) \in \mathbf{g r}\left(f_{i, j}\right) & \forall i \in S, j \in D
\end{array}
$$

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

$$
x \in \operatorname{gr}(f)=\bigcup_{i=1}^{d} S^{i} \subseteq \mathbb{R}^{n}
$$

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

$$
x \in \operatorname{gr}(f)=\bigcup_{i=1}^{d} S^{i} \subseteq \mathbb{R}^{n}
$$

2. Introduce integer variables $z \in \mathbb{Z}^{r}$

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

$$
x \in \operatorname{gr}(f)=\bigcup_{i=1}^{d} S^{i} \subseteq \mathbb{R}^{n}
$$

2. Introduce integer variables $z \in \mathbb{Z}^{r}$
3. Build LP relaxation $Q \subseteq \mathbb{R}^{n+r}$ so:

$$
\operatorname{Proj}_{x}\left(Q \cap\left(\mathbb{R}^{n} \times \mathbb{Z}^{r}\right)\right)=\bigcup_{i=1}^{d} S^{i}
$$

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

$$
x \in \operatorname{gr}(f)=\bigcup_{i=1}^{d} S^{i} \subseteq \mathbb{R}^{n}
$$

2. Introduce integer variables $z \in \mathbb{Z}^{r}$
3. Build LP relaxation $Q \subseteq \mathbb{R}^{n+r}$ so:

$$
\operatorname{Proj}_{x}\left(Q \cap\left(\mathbb{R}^{n} \times \mathbb{Z}^{r}\right)\right)=\bigcup_{i=1}^{d} S^{i}
$$

? How do we choose Q ?

The right formulation matters!

N	Metric	MC	CC	DLog	Stencil
4	Mean (s)	1.4	1.5	0.9	0.4
	Win	0	0	0	100
8	Mean (s)	39.3	97.2	12.6	2.7
	Win	0	0	0	100
16	Mean (s)	1370.9	1648.1	352.8	24.6
	Fail	53	66	6	0
	Win	0	0	0	80
32	Mean (s)	1800.0	1800.0	1499.6	133.5
	Fail	80	80	50	0
	Win	0	0	0	80

Solve time (in seconds, with CPLEX v12.7.0). Functions have N^{2} pieces, fixed network $|S|=|D|=5$.

- Advanced Stencil formulation is the fastest on every instance
- $>10 x$ speedup on average for medium/large instances
- Previous approaches could not solve 50 of 80 largest instances

The right formulation matters!

N	Metric	MC	CC	DLog	Stencil
4	Mean (s)	1.4	1.5	0.9	0.4
	Win	0	0	0	100
8	Mean (s)	39.3	97.2	12.6	2.7
	Win	0	0	0	100
16	Mean (s)	1370.9	1648.1	352.8	24.6
	Fail	53	66	6	0
	Win	0	0	0	80
32	Mean (s)	1800.0	1800.0	1499.6	133.5
	Fail	80	80	50	0
	Win	0	0	0	80

Solve time (in seconds, with CPLEX v12.7.0). Functions have N pieces, fixed network $|S|=|D|=5$.

- Advanced Stencil formulation is the fastest on every instance
- $>10 x$ speedup on average for medium/large instances
- Previous approaches could not solve 50 of 80 largest instances

What do we want in a MIP formulation?

\# 1 Strength How tight is the LP relaxation?

X Not sharp $=$ bad bounds from LP

What do we want in a MIP formulation?

\# 1 Strength How tight is the LP relaxation?

X Not sharp $=$ bad bounds from LP

What do we want in a MIP formulation?

\# 1 Strength How tight is the LP relaxation?

Sharp $=$ good bounds from LP

What do we want in a MIP formulation?

\# 1 Strength How tight is the LP relaxation?

Sharp $=$ good bounds from LP

Ideal $=$ Sharp $+\operatorname{ext}(Q) \subseteq \mathbb{R}^{n} \times \mathbb{Z}^{r}$

What do we want in a MIP formulation?

\# 1 Strength How tight is the LP relaxation?

Sharp $=$ good bounds from LP

Ideal $=$ Sharp $+\operatorname{ext}(Q) \subseteq \mathbb{R}^{n} \times \mathbb{Z}^{r}$
$=$ strongest possible relaxation!

What do we want in a MIP formulation?

\# 2 Size How many additional variables and constraints?

$$
x \in \bigcup_{i=1}^{d} S^{i} \Longleftrightarrow \text { exists } z \in \mathbb{Z}^{r} \text { such that }(x, z) \in Q
$$

What do we want in a MIP formulation?

\# 2 Size How many additional variables and constraints?

$$
\begin{aligned}
& x \in \bigcup_{i=1}^{d} S^{i} \Longleftrightarrow \text { exists } z \in \mathbb{Z}^{r} \text { such that }(x, z) \in Q \\
& Q=\left\{(x, z) \left\lvert\, A\binom{x}{z} \leq b\right.\right\} \text {, where } A \in \mathbb{R}^{m \times(n+r)}
\end{aligned}
$$

What do we want in a MIP formulation?

\# 2 Size How many additional variables and constraints?

$$
\begin{aligned}
& x \in \bigcup_{i=1}^{d} S^{i} \Longleftrightarrow \text { exists } z \in \mathbb{Z}^{r} \text { such that }(x, z) \in Q \\
& Q=\left\{(x, z) \left\lvert\, A\binom{x}{z} \leq b\right.\right\} \text {, where } A \in \mathbb{R}^{m \times(n+r)}
\end{aligned}
$$

- How big is...
- r ? (\# of integer variables)
- m ? (\# of constraints)

What do we want in a MIP formulation?

\# 2 Size How many additional variables and constraints?

$$
\begin{aligned}
& x \in \bigcup_{i=1}^{d} S^{i} \Longleftrightarrow \text { exists } z \in \mathbb{Z}^{r} \text { such that }(x, z) \in Q \\
& Q=\left\{(x, z) \left\lvert\, A\binom{x}{z} \leq b\right.\right\} \text {, where } A \in \mathbb{R}^{m \times(n+r)}
\end{aligned}
$$

- How big is...
- r ? (\# of integer variables)
- m ? (\# of constraints)
- The smaller m^{*} and r, the quicker to optimize over LP relaxation
*(We really only care about general inequality constraints, we get variable bounds, e.g. $x \geq 0$, for free)

What do we want in a MIP formulation?

\# 3 Branching How does formulation change in branch-and-bound?

What do we want in a MIP formulation?

\# 3 Branching How does formulation change in branch-and-bound?

$$
z_{1} \leq 0
$$

$z_{1} \geq 1$

Branching with Formulation A

What do we want in a MIP formulation?

\# 3 Branching How does formulation change in branch-and-bound?

Branching with Formulation B

How can we build MIP formulations?

Approach \#1: Ad-hoc formulations

Ad-hoc formulations for trained neural networks

- Just reason it out by hand!

Ad-hoc formulations for trained neural networks

- Just reason it out by hand!
- Simple example:

$$
\operatorname{MAX}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R} \mid L \leq x \leq U, y=\max \{0, w \cdot x+b\}\right\}
$$

Ad-hoc formulations for trained neural networks

- Just reason it out by hand!
- Simple example:

$$
\operatorname{MAX}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R} \mid L \leq x \leq U, y=\max \{0, w \cdot x+b\}\right\}
$$

- MAX \equiv ReLu activation unit in trained neural network

Ad-hoc formulations for trained neural networks

- Just reason it out by hand!
- Simple example:

$$
\operatorname{MAX}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R} \mid L \leq x \leq U, y=\max \{0, w \cdot x+b\}\right\}
$$

- MAX \equiv ReLu activation unit in trained neural network
- Big-M formulation:

$$
\begin{gathered}
y+L(1-z) \leq w \cdot x+b \leq y \\
y \leq U z \\
(x, y, z) \in[L, U] \times \mathbb{R}_{\geq 0} \times\{0,1\}
\end{gathered}
$$

Ad-hoc formulations for trained neural networks

- Just reason it out by hand!
- Simple example:

$$
\operatorname{MAX}=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R} \mid L \leq x \leq U, y=\max \{0, w \cdot x+b\}\right\}
$$

- MAX \equiv ReLu activation unit in trained neural network
- Big-M formulation:

$$
\begin{gathered}
y+L(1-z) \leq w \cdot x+b \leq y \\
y \leq U z \\
(x, y, z) \in[L, U] \times \mathbb{R}_{\geq 0} \times\{0,1\}
\end{gathered}
$$

- Not ideal or sharp

Approach \#2: Combinatorial construction framework

Univariate piecewise linear functions

- Introduce λ_{i} variable for each breakpoint v^{i}

$$
(x, y) \in \operatorname{gr}(f) \Longleftrightarrow(x, y)=\sum_{i=1}^{d+1} v^{i} \lambda_{i} \text { and } \lambda \text { is SOS2 }
$$

- λ is SOS2 if:
[Beale 1970, 1976]

1. they are convex multipliers $\left(\lambda \in \Delta^{d+1}=\right.$ unit simplex $)$
2. $\operatorname{support}(\lambda) \subseteq\{j, j+1\}$ for some j

Univariate piecewise linear functions

- Introduce λ_{i} variable for each breakpoint v^{i}

$$
(x, y) \in \operatorname{gr}(f) \Longleftrightarrow(x, y)=\sum_{i=1}^{d+1} v^{i} \lambda_{i} \text { and } \lambda \text { is SOS2 }
$$

- λ is SOS2 if:
[Beale 1970, 1976]

1. they are convex multipliers $\left(\lambda \in \Delta^{d+1}=\right.$ unit simplex $)$
2. $\operatorname{support}(\lambda) \subseteq\{j, j+1\}$ for some j

Univariate piecewise linear functions

- Introduce λ_{i} variable for each breakpoint v^{i}

$$
(x, y) \in \bigcup_{i=1}^{d} S^{i} \Longleftrightarrow(x, y)=\sum_{i=1}^{d+1} v^{i} \lambda_{i} \text { and } \lambda \in \bigcup_{i=1}^{d} P(\{i, i+1\})
$$

- $P(T)=\left\{\lambda \in \Delta^{d+1}: \operatorname{support}(\lambda) \subseteq T\right\}$ (face of the simplex)

The SOS2 constraint

$$
\lambda \in \bigcup_{i=1}^{d} P(\{i, i+1\}) \quad P(\{2,3\}) \underbrace{P(\{1,2\})}_{\lambda_{3}}
$$

1. Strip away problem data (values of v^{i})
2. Formulate the SOS2 constraint on λ over the unit simplex Δ^{d+1}
3. Apply linear transformation $(x, y)=\sum_{i=1}^{d+1} v^{i} \lambda_{i}$

$$
P(T)=\left\{\lambda \in \Delta^{d+1}: \text { support }(\lambda) \subseteq T\right\}(\text { face of the simplex })
$$

A combinatorial way to build formulations

Independent branching formulations

- Conflict graph: $\mathscr{G}^{c}=([n], E)$, where

$$
E=\left\{\{u, v\} \in[n]^{2}:\{u, v\} \nsubseteq T^{i} \text { for each } i\right\}
$$

- Biclique cover for $\mathscr{G}^{c}:\left\{\left(A^{j}, B^{j}\right)\right\}_{j=1}^{t}$ where $E=\bigcup_{j=1}^{t}\left(A^{j} \times B^{j}\right)$

Theorem (H. and Vielma 2016)

If an independent branching formulation exists* for $\bigcup_{i=1}^{d} P\left(T^{i}\right)$, then

$$
\sum_{v \in A^{j}} \lambda_{v} \leq z_{j}, \quad \sum_{v \in B^{j}} \lambda_{v} \leq 1-z_{j}, \quad z_{j} \in\{0,1\} \quad \forall j \in[t]
$$

is an ideal formulation for $\bigcup_{i=1}^{d} P\left(T^{i}\right)$ if and only if $\left\{\left(A^{j}, B^{j}\right)\right\}_{j=1}^{t}$ is a biclique cover for \mathscr{G}^{c}.

Bivariate piecewise linear functions

Stencil formulation for bivariate functions

- Aggregated SOS2 along x direction
- Separated edges between vertices that are "far apart" in x direction
- Needs $\left\lceil\log _{2}\right.$ (\# breakpoints in x direction) \rceil levels (variables)

Stencil formulation for bivariate functions

- Aggregated SOS2 along y direction
- Separated edges between vertices that are "far apart" in y direction
- Needs $\left\lceil\log _{2}\right.$ (\# breakpoints in y direction) \rceil levels (variables)

Stencil formulation for bivariate functions

- Separate all edges along diagonal lines
- Can aggregate diagonal lines that are "far apart"
- Needs 3 levels (variables)

Stencil formulation for bivariate functions

- Separate all edges along anti-diagonal lines
- Can aggregate anti-diagonal lines that are "far apart"
- Needs 3 levels (variables)

A combinatorial way to build formulations

- How do we do this automatically?
- Especially important for more unstructured constraints:

A combinatorial way to build formulations

- How do we do this automatically?
- Simple MIP formulation for minimum biclique cover
- Implemented in PiecewiseLinearOpt.jl to make stencil formulation "smaller"
- Unfortunately, it doesn't scale
- Wishlist:

1. Practically efficient algorithm for minimum biclique cover...
2. ...and an implementation in Julia

Approach \#3: Geometric construction framework

The embedding approach

Two ingredients:

1. The sets $\mathscr{T}=\left(T^{i} \subseteq[n]\right)_{i=1}^{d}$ (correspond to faces of $\operatorname{simplex} ;$ not in (x, z)-space!)

The embedding approach

Two ingredients:

1. The sets $\mathscr{T}=\left(T^{i} \subseteq[n]\right)_{i=1}^{d}$ (correspond to faces of simplex; not in (x, z)-space!)
2. Unique codes $H=\left(h^{i}\right)_{i=1}^{d} \subset \mathbb{R}^{r}$ (also hole-free, in convex position)

The embedding approach

Two ingredients:

1. The sets $\mathscr{T}=\left(T^{i} \subseteq[n]\right)_{i=1}^{d}$ (correspond to faces of simplex; not in (x, z)-space!)
2. Unique codes $H=\left(h^{i}\right)_{i=1}^{d} \subset \mathbb{R}^{r}$ (also hole-free, in convex position)

Build embedding:

$$
\operatorname{Em}(\mathscr{T}, H)=\binom{P\left(T^{1}\right)}{h^{1}} \cup\binom{P\left(T^{2}\right)}{h^{2}} \cup \cdots \cup\binom{P\left(T^{d}\right)}{h^{d}}
$$

The embedding approach

Two ingredients:

1. The sets $\mathscr{T}=\left(T^{i} \subseteq[n]\right)_{i=1}^{d}$ (correspond to faces of simplex; not in (x, z)-space!)
2. Unique codes $H=\left(h^{i}\right)_{i=1}^{d} \subset \mathbb{R}^{r}$ (also hole-free, in convex position)

Proposition (Vielma 2017)

$\operatorname{Conv}(\operatorname{Em}(\mathscr{T}, H))$ is an ideal formulation. Conversely, any nonextended ideal formulation implies the existence of some corresponding \mathscr{T} and H.

Geometric formulation construction

Theorem (H. and Vielma 2017a)

If \mathscr{T} is path connected and H is in convex position, then $\operatorname{Conv}(\operatorname{Em}(\mathscr{T}, H))$ is

$$
\begin{gathered}
\sum_{v=1}^{n} \min _{s: v \in T^{s}}\left\{b \cdot h^{s}\right\} \lambda_{v} \leq b \cdot z \leq \sum_{v=1}^{n} \max _{s: v \in T^{s}}\left\{b \cdot h^{s}\right\} \lambda_{v} \quad \forall b \in B \\
(\lambda, z) \in \Delta^{n} \times \operatorname{aff}(H),
\end{gathered}
$$

where B contains normal directions to all hyperplanes spanned by $C=\left\{h^{j}-h^{i}: T^{i} \cap T^{j} \neq \varnothing\right\}$ in $\operatorname{span}(C)$.

Geometric formulation construction

Theorem (H. and Vielma 2017a)

If \mathscr{T} is path connected and H is in convex position, then $\operatorname{Conv}(\operatorname{Em}(\mathscr{T}, H))$ is

$$
\begin{gathered}
\sum_{v=1}^{n} \min _{s: v \in T^{s}}\left\{b \cdot h^{s}\right\} \lambda_{v} \leq b \cdot z \leq \sum_{v=1}^{n} \max _{s: v \in T^{s}}\left\{b \cdot h^{s}\right\} \lambda_{v} \quad \forall b \in B \\
(\lambda, z) \in \Delta^{n} \times \operatorname{aff}(H),
\end{gathered}
$$

where B contains normal directions to all hyperplanes spanned by $C=\left\{h^{j}-h^{i}: T^{i} \cap T^{j} \neq \varnothing\right\}$ in $\operatorname{span}(C)$.

Crucial points:

1. \# variables $=\#$ of components of codes in H
2. \# constraints $=2 \times(\#$ hyperplanes $)$

Geometric formulation construction

1. Ambient space $\mathbb{R}^{\log _{2}(d)} \Longrightarrow \log _{2}(d)$ variables

Geometric formulation construction

$$
C=\left\{h^{j}-h^{i}: T^{i} \cap T^{j} \neq \varnothing\right\}
$$

Geometric formulation construction

Geometric formulation construction

$$
C=\left\{\mathbf{e}^{i}\right\}_{i=1}^{\log _{2}(d)}
$$

Geometric formulation construction

$B=$ normal directions to hyperplanes spanned by C

Geometric formulation construction

$$
B=\left\{\mathbf{e}^{i}\right\}_{i=1}^{\log _{2}(d)}
$$

Geometric formulation construction

$$
B=\left\{\mathbf{e}^{i}\right\}_{i=1}^{\log _{2}(d)}
$$

2. directions in C are axis-aligned $\Longrightarrow 2 \log _{2}(d)$ constraints

Interlude: Modeling tools

Here's the math $(d=8)$:

$$
\begin{array}{lll}
\min _{x} & \sum_{i \in S} \sum_{j \in D} f_{i, j}\left(x_{i, j}\right) & \\
\text { s.t. } & \sum_{j \in D} x_{i, j}=s_{i} \quad \forall i \in S \\
& \sum_{i \in S} x_{i, j}=d_{j} \quad \forall j \in D \\
& x_{i, j} \geq 0 \quad \forall i \in S, j \in D
\end{array}
$$

Interlude: Modeling tools

Here's the math $(d=8)$:

$$
\begin{array}{lll}
\min _{x \geq 0} & \sum_{i \in S} \sum_{j \in D} z_{i, j} & \\
\text { s.t. } & \sum_{j \in D} x_{i, j}=s_{i} \quad \forall i \in S & \\
& \sum_{i \in S} x_{i, j}=d_{j} \quad \forall j \in D & \\
& \left(x_{i, j} z_{i, j}\right)=\sum_{k=1}^{N+1} v_{i, j}^{k} \lambda_{k}^{i, j} & \forall i \in S, j \in D \\
& \lambda_{3}^{i, j}+\lambda_{4}^{i, j}+2 \lambda_{5}^{i, j}+2 \lambda_{6}^{i, j}+3 \lambda_{7}^{i, j}+3 \lambda_{8}^{i, j}+4 \lambda_{9}^{i, j} \leq z_{1}^{i, j} & \forall i \in S, j \in D \\
& \lambda_{2}^{i, j}+\lambda_{3}^{i, j}+2 \lambda_{4}^{i, j}+2 \lambda_{5}^{i, j}+3 \lambda_{6}^{i, j}+3 \lambda_{7}^{i, j}+4 \lambda_{8}^{i, j}+4 \lambda_{9}^{i, j} \geq z_{1}^{i, j} & \forall i \in S, j \in D \\
& \lambda_{4}^{i, j}+\lambda_{5}^{i, j}+\lambda_{6}^{i, j}+\lambda_{7}^{i, j}+2 \lambda_{8}^{i, j}+2 \lambda_{9}^{i, j} \leq z_{2}^{i, j} & \forall i \in S, j \in D \\
& \lambda_{3}^{i, j}+\lambda_{4}^{i, j}+\lambda_{5}^{i, j}+\lambda_{6}^{i, j}+2 \lambda_{7}^{i, j}+2 \lambda_{8}^{i, j}+2 \lambda_{9}^{i, j} \geq z_{2}^{i, j} & \forall i \in S, j \in D \\
& \lambda_{6}^{i, j}+\lambda_{7}^{i, j}+\lambda_{8}^{i, j}+\lambda_{9}^{i, j} \leq z_{3}^{i, j} \leq \lambda_{5}^{i, j}+\lambda_{6}^{i, j}+\lambda_{7}^{i, j}+\lambda_{8}^{i, j}+\lambda_{9}^{i, j} & \forall i \in S, j \in D \\
& \left(\lambda^{i, j}, z^{i, j}\right) \in \Delta^{9} \times\{0,1,2,3,4\} \times\{0,1,2\} \times\{0,1\} & \forall i \in S, j \in D
\end{array}
$$

Now turn this into code.

Interlude: Modeling tools

```
using JuMP, PiecewiseLinearOpt
model = Model()
@variable(model, x[i in S, j in D] >= 0)
for j in D
    @constraint(model, sum(x[i,j] for i in S) == d[j])
end
for i in S
    @constraint(model, sum(x[i,j] for j in D) == s[i])
end
for i in S, j in D
    z[i,j] = piecewiselinear(model, x[i,j], t[i,j],
    f[i,j], method=:ZigZag)
end
@objective(model, Min, sum(z))
solve(model)
```


Building ideal formulations computationally

- Wishlist:

1. Practically efficient algorithm for spanning hyperplanes...
2. ...and a Julia implementation

Proposition (Vielma 2017)

$\operatorname{Conv}(\operatorname{Em}(\mathscr{T}, H))$ is an ideal formulation. Conversely, any nonextended ideal formulation implies the existence of some corresponding \mathscr{T} and H.

- Key point: Compute convex hull for an ideal formulation!
- Instead of computing spanning hyperplanes directly...use Julia!

Building ideal formulations computationally

- Tower puzzle (Juan Pablo Vielma and Austin Herrling): place integers on rectangular grid, subject to "vision number" constraints
- Which formulation for "vision number" constraints? Compute it!
using CDDLib, Polyhedra
vertices = compute_vision_numbers(idx)
points = SimpleVRepresentation(vertices)
poly = polyhedron(points, CDDLibrary(:exact))
removehredundancy! (poly)
ineq = SimpleHRepresentation(poly) \#ineq.A, ineq.b

Building intuition with computational tools

- What if I want a generic ideal formulation? Compute examples!
- Generate some data and turn this...

```
m = Model()
@variable(m, l[i] <= x[i=1:d] <= u[i])
@variable(m, y >= 0)
@variable(m, z0 >= 0)
@variable(m, z1 >= 0)
@variable(m, x0[1:d])
@variable(m, y0)
@variable(m, x1[1:d])
@variable(m, y1 >= 0)
@constraint(m, [i=1:d], x[i] == x0[i] + x1[i])
@constraint(m, y == y0 + y1)
@constraint(m, 1 == z0 + z1)
@constraint(m, y0 == 0)
@constraint(m, dot(w,x0) + b <= 0)
@constraint(m, [i=1:d], x0[i] >= l[i]*z1)
@constraint(m, [i=1:d], x0[i] <= u[i]*z1)
@constraint(m, y1 == dot(w, x1) + b)
@constraint(m, [i=1:d], x1[i] >= l[i]*z0)
@constraint(m, [i=1:d], x1[i] <= u[i]*z0)
poly = polyhedron(m, CDDLibrary(:exact))
P = eliminate(poly, [eliminate_vars;])
removehredundancy! (P)
```


Building intuition with computational tools

- What if I want a generic ideal formulation? Compute examples!
- ...into this...
$-1 x_{_} 1+0 x_{_} 2+0 x_{-} 3+-1 y+-39 z<=4$
$-1 x_{1} 1+2 x_{_} 2+0 x_{-} 3+-1 y+-9 z<=20$
$1 \mathrm{x}_{-} 1+-2 \mathrm{x}_{-} 2+3 \mathrm{x}_{-} 3+1 \mathrm{y}+50 \mathrm{z}<=51$
$1 \mathrm{x}_{-} 1+-2 \mathrm{x}_{-} 2+0 \mathrm{x}_{-} 3+1 \mathrm{y}+-7 \mathrm{z}<=21$
$0 x_{-} 1+-2 x_{-} 2+3 x_{-} 3+1 y+39 z<=45$
$0 \mathrm{x} _1+-2 \mathrm{x} _2+0 \mathrm{x} _3+1 \mathrm{y}+-18 \mathrm{z}<=15$
$1 x_{1} 1+0 x_{-} 2+3 x_{-} 3+1 y+20 \mathrm{z}<=37$
$0 x_{-} 1+0 x_{-} 2+3 x_{-} 3+1 y+9 \mathrm{z}<=31$
$1 x_{_} 1+0 x_{-} 2+0 x_{-} 3+1 y+-37 \mathrm{z}<=7$
$0 x_{-} 1+0 x_{-} 2+0 x_{-} 3+1 y+-48 z_{<=1}$
$0 x_{-} 1+2 x_{-} 2+0 x_{-} 3+-1 y+-20 \mathrm{z}<=15$
$0 x_{-} 1+0 x_{-} 2+0 x_{-} 3+-1 y+-50 \mathrm{z}<=-1$
$1 \mathrm{x}_{1} 1+0 \mathrm{x} _2+0 \mathrm{x}$ - $3+0 \mathrm{y}+0 \mathrm{z}<=6$
$0 x_{-} 1+0 x_{-} 2+1 x_{-} 3+0 y+0 z_{1}<10$
$-1 x_{-} 1+0 x_{-} 2+0 x_{-} 3+0 y+0 z<=5$
$0 x_{-} 1+1 x_{-} 2+0 x_{-} 3+0 y+0 z_{l}<8$
$0 x_{-} 1+-1 x_{-} 2+0 x_{-} 3+0 y+0 \quad z<=7$
$0 x_{-} 1+0 x_{-} 2+0 x_{-} 3+-1 y+0 \quad z<=0$
$-1 x_{-} 1+2 x_{-} 2+-3 x_{-} 3+-1 y+0 z_{l}<-2$

Building intuition with computational tools

- What if I want a generic ideal formulation? Compute examples!
- ...and then eventually this:

Proposition (Huchette 2018)

An ideal formulation for MAX is:

$$
\begin{array}{cc}
y \geq w \cdot x+b \\
y \leq \sum_{i \in I} w_{i} x_{i}-\sum_{i \in I} w_{i} L_{i}(1-z)+\left(b+\sum_{i \notin I} w_{i} U_{i}\right) z & \forall I \subseteq \llbracket d \rrbracket \\
y \geq \sum_{i \in I} w_{i} x_{i}-\sum_{i \in I} w_{i} U_{i}(1-z)+\left(b+\sum_{i \notin I} w_{i} L_{i}\right) z & \forall I \subseteq \llbracket d \rrbracket \\
(x, y, z) \in[L, U] \times \mathbb{R}_{\geq 0} \times\{0,1\} .
\end{array}
$$

Conclusion

- Choice of formulation can greatly affect performance
- Many ways to build different formulations:

1. Ad-hoc
2. Combinatorially
3. Geometrically
4. Computationally, using Julia

- Wishlist: Efficient algorithm and Julia implementation of:
- minimum biclique cover
- spanning hyperplanes of set of directions

Thanks for listening!

