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Motivation

We consider a peer-to-peer community,

where different buildings exchange energy
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Lecture outline

• We will formulate a large scale

(stochastic) optimization problem

• We will apply decomposition

algorithm on it

• We will put emphasis on the

numerical side

(built on top of JuMP!)
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Nodal decomposition of a

network optimization problem



Modeling flows between nodes

Graph G = (V, E)

Fi

Qe

• Qe
t flow through edge e,

• Fi
t flow imported at node i

Let A be the node-edge incidence matrix

At each time t ∈ J0,T − 1K,

Kirchhoff current law couples nodal

and edge flows

AQt + Ft = 0

3/23



Writing down the nodal problem

We aim at minimizing the nodal costs over the nodes i ∈ V

J iV(Fi ) = min
Xi ,Ui

E
[ T−1∑

t=0

Lit(Xi
t ,U

i
t ,Wt+1)︸ ︷︷ ︸

instantaneous cost

+K i (Xi
T )
]

subject to, for all t ∈ J0,T − 1K

i) The nodal dynamics constraint (for battery and hot water tank)

Xi
t+1 = g i

t (Xi
t ,U

i
t ,Wt+1)

ii) The non-anticipativity constraint (future remains unknown)

σ(Ui
t) ⊂ σ(W0, · · · ,Wt)

iii) The load balance equation (production + import = demand)

∆i
t(Xi

t ,U
i
t ,F

i
t ,Wt+1) = 0
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Transportation costs are decoupled in time

At each time step t ∈ J0,T − 1K , we define the edges cost as the sum of

the costs of flows Qe
t through the edges e of the grid

JeE(Q) = E
( T−1∑

t=0

let (Qe
t )
)

5/23



Global optimization problem

The nodal cost JV aggregates the costs at all nodes i

JV(F) =
∑
i∈V

J iV(Fi )

and the edge cost JE aggregates the edges costs at all time t

JE(Q) =
∑
e∈E

JeE(Qe)

The global optimization problem writes

V ] = min
F,Q

JV(F) + JE(Q)

s.t. AQ + F = 0
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What do we plan to do?

• We have formulated a multistage stochastic optimization problem

on a graph

• We will handle the coupling Kirchhoff constraints by

two decomposition methods

– Price decomposition

– Resource decomposition

• We will show the scalability of decomposition algorithms

(We solve problems up to 48 buildings)
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Resolution methods



The three levels of coordination

Price decomposition decomposes the global problem with a price process λ

HOUSE 

HOUSE 

HOUSE 

Three levels of hierarchy

1. The central planner fixes a price λ

so as to optimize global cost

2. The nodal managers manage buildings

to decrease local costs

3. Nodal value functions are computed

locally, time steps by time steps
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The central planner has to find optimal coordination process

• The central planner aims to find the optimal price process λ

max
λ

V (λ) := min
F,Q

JP(F) + JT (Q) +
〈
λ ,AQ + F

〉
• Let λ(k) be a given price

The global function V (λ(k)) decomposes w.r.t. nodes and arcs

HOUSE 

λ
(k)
1

HOUSE 

λ
(k)
2

HOUSE 

λ
(k)
3

//
//

//

min
F

JP(F) +
〈
λ(k) ,F

〉
= min

F1,··· ,FN

N∑
i=1

J iP(Fi ) +
〈
λi ,Fi

〉
=

N∑
i=1

min
Fi

{
J iP(Fi ) +

〈
λi ,Fi

〉}
︸ ︷︷ ︸

local problem

• Once subproblems solved by each nodal managers,

she updates the price with the oracle ∇V (λ(k))

λ(k+1) = λ(k) + ρ∇V (λ(k))
9/23



Managing buildings in each node

At each building i ∈ J1,NK, the nodal manager

• Receives a price λi from the central planner and build the nodal problem

V i (λi ) = min
Fi

J iP(Fi ) +
〈
λi ,Fi

〉
which rewrites as a Stochastic Optimal Control problem

V i (λi ) = min
Xi ,Ui ,Fi

E
[ T−1∑

t=0

Lit(Xi
t ,U

i
t ,W

i
t+1) +

〈
λi
t ,F

i
t

〉
+ K i (Xi

T )
]

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,W

i
t+1)

σ(Ui
t) ⊂ σ(Wi

0, · · · ,Wi
t)

∆i
t(Xi

t ,U
i
t ,F

i
t ,Wt+1) = 0

• Solves V i by Dynamic Programming

• Estimates by Monte Carlo the local gradient

by simulating the optimal flow (Fi )] = (Fi
0, · · · ,Fi

T−1)]

∇V i (λi ) = E
[
(Fi )]

]
∈ RT
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Nodal value functions compute by Dynamic Programming

V i
0 V i

1 V i
2 V i

T

If the price process λ = (λ0, · · · ,λT−1) is Markovian, then

• We are able to compute value functions {V i
t} by backward recursion

• At each time step, we solve the local one-step DP problem

V i
t(x

i
t ) = min

uit ,f
i
t

|Wi
t+1|∑

s=1

ps
(
Lt(x

i
t , u

i,s
t ,W

i,s
t+1)+

〈
λi,s
t , f

i,s
t

〉
+V i

t+1(f it (x i
t , u

i,s
t ,W

i,s
t+1)

)
that decomposes on all atoms

• DP one-step problem formulates as LP or QP problem!

11/23



How about resource allocation?

HOUSE 

R
(k)
1

HOUSE 

R
(k)
2

HOUSE 

R
(k)
3

//
//

//

• We fix allocations R rather than prices λ

and solve

min
R

V (R) := V P(R) + V T (R)

with

V P (R) = min
F

JP (F)

s.t. F − R = 0

V T (R) = min
Q

JT (Q)

s.t. AQ + R = 0

• We must ensure that Rt ∈ im(A), that is

R1
t + · · ·+ RN

t = 0

• The update step becomes

R(k+1) = projim(A)

(
R(k) − ρ∇V (R(k))

)
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We obtain lower and upper bounds

Theorem

• For all multipliers λ = (λ0, · · · ,λT−1)

• For all allocations R = (R0, · · · ,RT−1) such that

R1
t + · · ·+ RN

t = 0

we have

V (λ) ≤ V ] ≤ V (R)

Proof.

Next thursday!
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Deducing two admissible global control policies

Once value functions V i
t and V

i

t computed, we define

• the global price policy

πt(x
1
t , · · · , xNt ,wt+1) ∈ arg min

ut ,ft ,qt

N∑
i=1

Lit(x
i
t , u

i
t ,wt+1) + V i

t+1

(
x it+1

)
s.t. x it+1 = g i

t (x it , u
i
t ,wt+1) , ∀i ∈ J1,NK

∆i
t(x

i
t , u

i
t , f

i
t ,w

i
t+1) , ∀i ∈ J1,NK

Aqt + ft = 0

• the global resource policy

πt(x
1
t , · · · , xNt ,wt+1) ∈ arg min

ut ,ft ,qt

E
[ N∑

i=1

Lit(x
i
t , u

i
t ,wt+1) + V

i
t+1

(
x it+1

)]
s.t. x it+1 = g i

t (x it , u
i
t ,wt+1) , ∀i ∈ J1,NK

∆i
t(x

i
t , u

i
t , f

i
t ,w

i
t+1) , ∀i ∈ J1,NK

Aqt + ft = 0
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Numerical results on urban

microgrids



We consider different urban configurations

3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes
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Problem settings

• One day horizon at 15mn time step: T = 96

• Weather corresponds to a sunny day in Paris (June 28th, 2015)

• We mix three kind of buildings

1. Battery + Electrical Hot Water Tank

2. Solar Panel + Electrical Hot Water Tank

3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices
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Algorithms inventory

Nodal decomposition

• Encompass price and resource decompositions

• Resolution by Quasi-Newton (BFGS) gradient descent

λ(k+1) = λ(k) + ρ(k)W (k)∇V (λ(k))

• BFGS iterates till no descent direction is found

• Each nodal subproblem solved by SDDP (quickly converge)

• Oracle ∇V (λ) estimated by Monte Carlo (Nscen = 1, 000)

SDDP

We use as a reference the good old SDDP algorithm

• Noises W1
t , · · · ,WN

t are independent node by node

(total support size is |supp(Wi
t)|N .) Need to resample the support!

• Level-one cut selection algorithm (keep 100 most relevant cuts)

• Converged once gap between UB and LB is lower than 1%
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Building problems on the fly

We use metaprogramming to build AbstractStochasticProgram

on the fly

HOUSE 

HOUSE 

HOUSE 

HOUSE 

Build node problem dynamically:

Then build global problem dynamically:
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Each level of hierarchy has its own algorithm

L-BFGS (IPOPT)

SDDP (StochDynamicProgramming)

QP (Gurobi)
One-step DP

Nodal managers

Global

All glue code is implemented in Julia 0.6 with JuMP 0.18

Special thanks to all JuliaOpt folks!
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Fortunately, everything converge nicely!

Illustrating convergence for 12-Nodes problem

0 50 100 150 200 250 300
Iterations

8.5

8.6

8.7

8.8

8.9

9.0

9.1

9.2

Co
st

 [
]

SDDP LB
SDDP UB
Confidence (95.0%)

Figure 1: SDDP convergence, upper and lower bounds
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Figure 1: DADP convergence, multipliers for Node-1
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Upper and lower bounds on the global problem

Graph 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

State dim. |X| 4 8 16 32 64

SDDP time 1’ 3’ 10’ 79’ 453’

SDDP LB 2.252 4.559 8.897 17.528 33.103

Price time 6’ 14’ 29’ 41’ 128’

Price LB 2.137 4.473 8.967 17.870 33.964

Resource time 3’ 7’ 22’ 49’ 91’

Resource UB 2.539 5.273 10.537 21.054 40.166

• For the 24-Nodes problem

V 0[sddp] ≤ V 0[price] ≤ V ] ≤ V 0[resource]

17.528 ≤ 17.870 ≤ V ] ≤ 21.054

• For the biggest instance, Price Decomposition is 3.5x as fast as SDDP
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Policy evaluation by Monte Carlo simulation

Graph 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP policy 2.26 ± 0.006 4.71 ± 0.008 9.36 ± 0.011 18.59 ± 0.016 35.50 ± 0.023

Price policy 2.28 ± 0.006 4.64 ± 0.008 9.23 ± 0.012 18.39 ± 0.016 34.90 ± 0.023

Gap -0.9 % +1.5% +1.4% +1.1% +1.7%

Resource policy 2.29 ± 0.006 4.71 ± 0.008 9.31 ± 0.011 18.56 ± 0.016 35.03 ± 0.022

Gap -1.3 % 0.0% +0.5% +0.2% +1.2%

Price policy beats SDDP policy and resource policy

V ] ≤ C [price] ≤ C [resource] ≤ C [sddp]

V ] ≤ 18.39 ≤ 18.56 ≤ 18.59
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Conclusion



Conclusion

• We have presented two algorithms that decompose,

spatially then temporally, a global optimization problem

under coupling constraints

• On this case study, decomposition beats SDDP

for large instances (≥ 24 nodes)

– In time (3.5x faster)

– In precision (> 1% better)

• Extension?

• Move from nodal to zonal decomposition

• Parallelization (towards a spatial parallelization scheme for SDDP)

• Test other decomposition schemes (operator splitting)
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