
JuMP-dev workshop 2018

A Julia JuMP-based module for polynomial
optimization with complex variables applied to ACOPF

Gilles Bareilles, Manuel Ruiz, Julie Sliwak

1. MathProgComplex.jl: A toolbox for Polynomial Optimization Problems with
Complex variables 𝑷𝑶𝑷−ℂ

2. The Lasserre hierarchy for (𝑷𝑶𝑷−ℂ)

3. Application to Optimal Power Flow in Alternating Current (ACOPF)

4. Conclusion and future work

https://github.com/JulieSliwak/MathProgComplex.jl (MIT license)

2

Outline

https://github.com/JulieSliwak/MathProgComplex.jl

A tool for Polynomial
Optimization Problems with
Complex variables (𝑷𝑶𝑷−ℂ)

1

𝑚𝑖𝑛

𝛼,𝛽

𝑝𝛼,𝛽
0 𝑧

𝛼
𝑧𝛽

𝑠. 𝑡.

𝛼,𝛽

𝑝𝛼,𝛽
𝑖 𝑧

𝛼
𝑧𝛽 ≥ 0 ∀𝑖 = 1. .𝑝

𝑧 ∈ ℂ𝑛

• Optimize a generic complex multivariate polynomial function, subject to some
complex polynomial equality and inequality constraints.

• A complex multivariate polynomial is a polynomial whose variables and coefficients
are complex numbers.

4

Polynomial Optimization Problems with

Complex Variables (𝑃𝑂𝑃 −ℂ)

• Our modeler provides a structure and methods for working with (𝑃𝑂𝑃−ℂ).

• The algebraic operations (+, -, *, /, conj, |.|) are implemented.

• The base type is Variable, from which Exponents and Polynomial can
be constructed by calling the respective constructors or with algebraic
operations.

• The Point type holds the variables at which polynomials can be evaluated.

5

A modeler for Polynomial Optimization

Problems with Complex variables (𝑃𝑂𝑃 −ℂ)

6

Basic structures

Structure Definition Notation Examples

Variable A pair (String, Type) where
Type can be Complex, Real
or Bool

𝑧 x = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒("x", 𝐶𝑜𝑚𝑝𝑙𝑒𝑥)
𝑦 = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒("y", 𝐶𝑜𝑚𝑝𝑙𝑒𝑥)
w = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒("w", 𝑅𝑒𝑎𝑙)
𝑢 = 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒("binary", 𝐵𝑜𝑜𝑙)

Exponent A product of Variables

𝑖

𝑧𝑖
𝛼𝑖𝑧𝑖

𝛽𝑖 𝑒𝑥𝑝𝑜1 = 𝑥2𝑐𝑜𝑛𝑗(𝑦)3,
𝑒𝑥𝑝𝑜2 = 𝑥𝑦

Polynomial A sum of Exponents times
complex coefficient 𝑐𝑘

𝑘𝑖

𝑧𝑘𝑖
𝛼𝑘𝑖𝑧𝑘𝑖

𝛽𝑘𝑖
𝑝 𝑥, 𝑦 = 1 + 4𝑖𝑚 𝑒𝑥𝑝𝑜1 + 3𝑒𝑥𝑝𝑜2

Point A dictionary (variable =>
value) to evaluate a
polynomial

𝑧1
⋮
𝑧𝑘

=
𝑣𝑎𝑙𝑢𝑒1

⋮
𝑣𝑎𝑙𝑢𝑒𝑘

𝑝𝑡 = 𝐷𝑖𝑐𝑡(𝑥 ⇒ 1 + 2𝑖𝑚, 𝑦 ⇒ 3𝑖𝑚)

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝, 𝑝𝑡 = −145 + 28𝑖𝑚

7

Polynomial Optimization Problems

Structure Definition Examples

Constraint A Polynomial with complex bounds 3𝑥 + 𝑦 + 2 ≤ 3 + 5𝑖𝑚

Problem

𝑃𝑂𝑃 − ℂ
several Variables

a Polynomial objective

several named Constraints

𝑚𝑖𝑛 𝑥𝑥 + 𝑦2 + 2

𝑠. 𝑡. 3𝑥 + 𝑦 + 2 ≤ 3 + 5𝑖𝑚

2 − 𝑖𝑚 ≤ 𝑦2 + 5𝑥𝑦 + 2 ≤ 3 + 7𝑖𝑚

𝑥𝑦 = 0

𝑥 ∈ ℂ, 𝑦 ∈ ℝ

Method to convert (POP−ℂ) to (POP−ℝ) using rectangular form:

𝑚𝑖𝑛
1− 𝑖

2
𝑣1+

1+ 𝑖

2
𝑣1

𝑠. 𝑡. 0.95 ≤ 𝑣1𝑣1 ≤ 1.05

𝑣1 ∈ ℂ

pb_cplx2real
𝑚𝑖𝑛 𝑣1𝑅𝑒 +𝑣1𝐼𝑚
𝑠. 𝑡. 0.95 ≤ 𝑣1𝑅𝑒

2 +𝑣1𝐼𝑚
2 ≤ 1.05

𝑣1𝑅𝑒,𝑣1𝐼𝑚 ∈ ℝ

8

Conversion to real numbers

Method to convert (POP−ℂ) to (POP−ℝ) using rectangular form:

𝑚𝑖𝑛
1− 𝑖

2
𝑣1+

1+ 𝑖

2
𝑣1

𝑠. 𝑡. 0.95 ≤ 𝑣1𝑣1 ≤ 1.05

𝑣1 ∈ ℂ

pb_cplx2real
𝑚𝑖𝑛 𝑣1𝑅𝑒 +𝑣1𝐼𝑚
𝑠. 𝑡. 0.95 ≤ 𝑣1𝑅𝑒

2 +𝑣1𝐼𝑚
2 ≤ 1.05

𝑣1𝑅𝑒,𝑣1𝐼𝑚 ∈ ℝ

Future work: conversion using polar form

𝑚𝑖𝑛
1− 𝑖

2
𝑣1+

1+ 𝑖

2
𝑣1

𝑠. 𝑡. 0.95 ≤ 𝑣1𝑣1 ≤ 1.05

𝑣1 ∈ ℂ

pb_cplx2real
𝑚𝑖𝑛 𝑟1(cos 𝜃1 +sin 𝜃1)

𝑠. 𝑡. 0.95 ≤ 𝑟1
2 ≤ 1.05

𝑟1,𝜃1 ∈ ℝ
9

Conversion to real numbers

10

Resolution

JuMP

m, jumpvar = get_JuMP_cartesian_model(pb, solver)

solve(m)

Final objective value = 1.45883471040128e+003

Final feasibility error (abs / rel) = 1.44e-007 / 1.15e-009

Final optimality error (abs / rel) = 3.04e-007 / 3.21e-011

of iterations = 15

of CG iterations = 7

of function evaluations = 24

of gradient evaluations = 16

of Hessian evaluations = 15

Total program time (secs) = 0.198 (0.203 CPU time)

Time spent in evaluations (secs) = 0.163

Problem Characteristics

Objective goal: Minimize

Number of variables: 18

bounded below only: 0

bounded above only: 0

bounded below and above: 0

fixed: 0

free: 18

Number of constraints: 27

linear equalities: 0

nonlinear equalities: 12

linear one-sided inequalities: 0

nonlinear one-sided inequalities: 0

linear two-sided inequalities: 0

nonlinear two-sided inequalities: 15

Number of nonzeros in Jacobian:

126

Number of nonzeros in Hessian: 54

11

Resolution

JuMP AMPL

m, jumpvar = get_JuMP_cartesian_model(pb, solver)

solve(m)

export_to_dat(pb, amplexportpath, point)

run_knitro(amplexportpath, amplscriptpath)

pt_knitro = read_Knitro_output(amplexportpath, pb)

feas,ctr = get_minslack(pb, pt_knitro)
objective = get_objective(pb, pt_knitro)

Final objective value = 1.45883471040128e+003

Final feasibility error (abs / rel) = 1.44e-007 / 1.15e-009

Final optimality error (abs / rel) = 3.04e-007 / 3.21e-011

of iterations = 15

of CG iterations = 7

of function evaluations = 24

of gradient evaluations = 16

of Hessian evaluations = 15

Total program time (secs) = 0.198 (0.203 CPU time)

Time spent in evaluations (secs) = 0.163

Final objective value = 1.45883471040144e+003

Final feasibility error (abs / rel) = 1.43e-007 / 1.15e-009

Final optimality error (abs / rel) = 3.03e-007 / 3.20e-011

of iterations = 15

of CG iterations = 7

of function evaluations = 24

of gradient evaluations = 16

of Hessian evaluations = 15

Total program time (secs) = 0.005 (0.000 CPU time)

Time spent in evaluations (secs) = 0.001

18 variables, 27 non linear constraints

12

Resolution

JuMP AMPL

m, jumpvar = get_JuMP_cartesian_model(pb, solver)

solve(m)

export_to_dat(pb, amplexportpath, point)

run_knitro(amplexportpath, amplscriptpath)

pt_knitro = read_Knitro_output(amplexportpath, pb)

feas,ctr = get_minslack(pb, pt_knitro)
objective = get_objective(pb, pt_knitro)

Final objective value = 1.33980721247613e+005

Final feasibility error (abs / rel) = 1.58e-008 / 4.09e-012

Final optimality error (abs / rel) = 2.14e-006 / 2.14e-012

of iterations = 48

of CG iterations = 24

of function evaluations = 49

of gradient evaluations = 49

of Hessian evaluations = 48

Total program time (secs) = 26.224 (26.000 CPU time)

Time spent in evaluations (secs) = 24.457

Final objective value = 1.33980721261059e+005

Final feasibility error (abs / rel) = 4.21e-007 / 1.09e-010

Final optimality error (abs / rel) = 5.41e-004 / 5.99e-010

of iterations = 47

of CG iterations = 24

of function evaluations = 48

of gradient evaluations = 48

of Hessian evaluations = 47

Total program time (secs) = 2.548 (2.531 CPU time)

Time spent in evaluations (secs) = 1.093

5378 variables, 8607 non linear constraints

Lasserre hierarchy for (𝑷𝑶𝑷− ℂ)

13

2

(𝑃𝑂𝑃−ℂ)

min 𝑓 𝑧 =

𝛼,𝛽

𝑓𝛼,𝛽
0 𝑧

𝛼
𝑧𝛽

𝑠.𝑡. 𝑔𝑖 𝑧 =

𝛼,𝛽

𝑔𝛼,𝛽
𝑖 𝑧

𝛼
𝑧𝛽 ≥ 0 ∀𝑖 = 1. .𝑚

𝑧 ∈ ℂ𝑛

⇓

Several SDP relaxations tighter and tighter (convergent hierarchy)

(𝑆𝐷𝑃)
𝑚𝑖𝑛 𝐶 ⋅𝑋

𝐴𝑖 ⋅ 𝑋 ≤ 𝑏𝑖 ∀𝑖 = 1. .𝑚

𝑋 ≽ 0

(𝑑𝑆𝐷𝑃)

𝑚𝑎𝑥 𝑏𝑇𝑦

𝑖

𝑚

𝐴𝑖𝑦𝑖 +𝑆 = 𝐶

𝑆 ≽ 0 14

SemiDefinite Programming (SDP) relaxations

of (𝑃𝑂𝑃 −ℂ)

Order 𝒅 0 1 2

𝑧𝑑 (1) 1 𝑧1 𝑧2 1 𝑧1 𝑧2 𝑧1𝑧2 𝑧1
2 𝑧2

2

ℳ𝑑(𝑧) 1 1 𝑧1 𝑧2
𝑧1 𝑧1

2 𝑧1𝑧2
𝑧2 𝑧2𝑧1 𝑧2

2

1 𝑧1 𝑧2
𝑧1 𝑧1

2 𝑧1𝑧2
𝑧2 𝑧2𝑧1 𝑧2

2

𝑧1𝑧2 𝑧1
2 𝑧2

2

𝑧1
2𝑧2 𝑧1

2𝑧1 𝑧1𝑧2
2

𝑧2
2𝑧1 𝑧2𝑧1

2 𝑧2
2𝑧2

𝑧1𝑧2 𝑧1
2𝑧2 𝑧2

2𝑧1

𝑧1
2

𝑧1
2𝑧1 𝑧1

2
𝑧2

𝑧2
2

𝑧2
2
𝑧1 𝑧2

2𝑧2

𝑧1
2 𝑧2

2 𝑧1
2𝑧1𝑧2 𝑧2

2𝑧1𝑧2

𝑧1
2𝑧1𝑧2 𝑧1

4 𝑧1
2
𝑧2
2

𝑧2
2𝑧1𝑧2 𝑧2

2
𝑧1
2 𝑧2

4

15

Moment matrices

𝑧𝑑 = 1 𝑧1 𝑧2 … 𝑧𝑛−1𝑧𝑛
𝑑−1 𝑧𝑛

𝑑 𝑇

ℳ𝑑 𝑧 = 𝑧𝑑𝑧𝑑
𝐻

Increasing the order improves the quality of the relaxation but increases
significantly the size of the problem.

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ≥ 0 ∀𝑖 = 1. .𝑚

𝑧 ∈ ℂ𝑛
⇔

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ℳ𝑑−𝑘𝑖
𝑧 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 = 𝑧𝑑𝑧𝑑
𝐻

Let us denote 𝑦𝛼𝛽 =ℳ𝑑 𝑧 [𝛼,𝛽]

⇔

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖
𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 = 𝑧𝑑𝑧𝑑
𝐻

⇒

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖
𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 ≽ 0

16

SDP relaxation

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ≥ 0 ∀𝑖 = 1. .𝑚

𝑧 ∈ ℂ𝑛
⇔

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ℳ𝑑−𝑘𝑖
𝑧 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 = 𝑧𝑑𝑧𝑑
𝐻

Let us denote 𝑦𝛼𝛽 =ℳ𝑑 𝑧 [𝛼,𝛽]

⇔

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖 𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 ≽ 0

𝑟𝑎𝑛𝑘 ℳ𝑑 𝑦 = 1

⇒

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖 𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 ≽ 0

17

SDP relaxation

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ≥ 0 ∀𝑖 = 1. .𝑚

𝑧 ∈ ℂ𝑛
⇔

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ℳ𝑑−𝑘𝑖
𝑧 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 = 𝑧𝑑𝑧𝑑
𝐻

Let us denote 𝑦𝛼𝛽 =ℳ𝑑 𝑧 [𝛼,𝛽]

⇒

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖 𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 ≽ 0

𝑟𝑎𝑛𝑘 ℳ𝑑 𝑦 = 1

⇒

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖 𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 ≽ 0

18

SDP relaxation

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ≥ 0 ∀𝑖 = 1. .𝑚

𝑧 ∈ ℂ𝑛
⇔

min 𝑓(𝑧)

𝑠. 𝑡. 𝑔𝑖 𝑧 ℳ𝑑−𝑘𝑖
𝑧 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 = 𝑧𝑑𝑧𝑑
𝐻

Let us denote 𝑦𝛼𝛽 =ℳ𝑑 𝑧 [𝛼,𝛽]

⇔

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖 𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 ≽ 0

𝑟𝑎𝑛𝑘 ℳ𝑑 𝑦 = 1

⇒

min 𝑓(𝑦)

𝑠. 𝑡. ℳ𝑑−𝑘𝑖 𝑔𝑖𝑦 ≽ 0 ∀𝑖 = 1. .𝑚

ℳ𝑑 𝑦 ≽ 0

19

SDP relaxation

Order 𝑑 relaxation

• Lasserre hierarchy is workable on complex or real problems.

• Sparsity is exploited: the set of exponents can be split into smaller cliques.

• Multi-ordered hierarchy is possible: different orders can be applied on
different constraints.

• Some symmetries can be speficied to simplify the problems (for example
if 𝑥𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ⇔−𝑥𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛).

20

Available options

(𝑃𝑂𝑃 − ℂ)

Lasserre

Hierarchy

module

(sparse, multi-
order…)

SDP relaxation

(primal or dual)

Resolution with
Mosek.jl

OR

Export to use
another

language/solver

21

Workflow process

Chordal
extension and

clique
decomposition

Application to Optimal Power
Flow in Alternating Current

22

3

23

Context and motivations

• RTE is the French transmission
system operator which provides
economical, reliable and clean
access to electrical power.

• Power transmission networks in
Alternating Current involve
complex quantities (voltage,
current, power flows, etc).

• RTE needs tools for (𝑃𝑂𝑃 − ℂ) to
reduce the time spent in testing
methods

1

45

6

7
8

9

3

2

Variables:

• 𝑉𝑛 ∈ ℂ, ∀𝑛 ∈ 𝑁: voltage at bus n

• 𝑆𝑛
𝑔𝑒𝑛

∈ ℂ, ∀𝑛 ∈ 𝐺 ⊂ 𝑁: power at generator bus n (𝐺: set of generators)

Constraints:

• Power flow equations ∀𝑛 ∈ 𝑁 :

𝑆𝑛
𝑙𝑜𝑎𝑑 +

𝑙=(𝑛,𝑑)

𝑆𝑙
𝑜𝑟𝑖𝑔

(𝑉) −

𝑙=(𝑜,𝑛)

𝑆𝑙
𝑑𝑒𝑠𝑡(𝑉) = 𝑆𝑛

𝑔𝑒𝑛

• Generator constraints: 𝑆𝑛
𝑚𝑖𝑛 ≤ 𝑆𝑛

𝑔𝑒𝑛
≤ 𝑆𝑛

𝑚𝑎𝑥 ∀𝑛 ∈ 𝐺

• Voltage magnitude constraints: (𝑉𝑛
𝑚𝑖𝑛)2 ≤ 𝑉𝑛

2 ≤ (𝑉𝑛
𝑚𝑎𝑥)2 ∀𝑛 ∈ 𝑁

• Thermal limits on branches: 𝑆𝑙
𝑜𝑟𝑖𝑔

𝑉
2
, 𝑆𝑙

𝑑𝑒𝑠𝑡 𝑉
2
≤ 𝑆𝑙

𝑚𝑎𝑥 2 ∀𝑙 ∈ 𝐿

Minimization of active power generation cost: min 𝑔∈𝐺 𝑐𝑔(𝑅𝑒𝑎𝑙(𝑆𝑔
𝑔𝑒𝑛

))
24

Optimal Power Flow in Alternating Current

S
a

fe
ty

c
o

n
s
tr

a
in

ts

Matpower

ACOPF

(𝑷𝑶𝑷 − ℂ)

Conversion to

𝑷𝑶𝑷 −ℝ

using
rectangular

form

Computation
of feasible

solutions with
AMPL and

Knitro

25

Resolution of ACOPF

PSSE

Grid

Optimization

Competition

…

Computation
of lower

bounds using
Lasserre
hierarchy

• Challenge launched by ARPA-E (Advanced Research Projects Agency-Energy)

• The problem to solve is an ACOPF in which some contigencies are anticipated.

• It can be formulated as a Mixed-Integer Polynomial Optimization Problem with
Complex numbers (𝑀𝐼𝑃𝑂𝑃−ℂ).

More information: https://gocompetition.energy.gov/ 26

Results for the Grid Optimization Competition

Dataset # of

buses

of

contingencies

of real

variables

of

constraints

of

nonzeros in

Jacobian

of

nonzeros in

Hessian

of solved

scenarios

IEEE14 14 1 92 207 937 245 90/100

Modified_IEEE14 14 1 92 203 905 237 84/100

RTS96 73 10 4784 12157 49838 7199 90/100

https://gocompetition.energy.gov/

Future works

4

Matpower

ACOPF

(𝑷𝑶𝑷 − ℂ)

Conversion to

𝑷𝑶𝑷 −ℝ

using
rectangular

form

Computation
of feasible

solutions with
AMPL and

Knitro

28

Resolution of ACOPF

PSSE

Grid

Optimization

Competition

…

Computation
of lower

bounds using
Lasserre
hiearchy

Collaboration with Carleton Coffrin to integrate

a power model in complex variables in

PowerModels.jl (a Julia/JuMP package for

Steady-State Power Network Optimization)

Matpower

ACOPF

(𝑷𝑶𝑷 − ℂ)

Conversion to

𝑷𝑶𝑷 −ℝ

using
rectangular

form

Computation
of feasible

solutions with
AMPL and

Knitro

29

Resolution of ACOPF

PSSE

Grid

Optimization

Competition

…

Computation
of lower

bounds using
Lasserre
hiearchy

Polar form

Matpower

ACOPF

(𝑷𝑶𝑷 − ℂ)

Conversion to

𝑷𝑶𝑷 −ℝ

using
rectangular

form

Computation
of feasible

solutions with
AMPL and

Knitro

30

Resolution of ACOPF

PSSE

Grid

Optimization

Competition

…

Computation
of lower

bounds using
Lasserre
hiearchy

Resolution

with JuMP

Matpower

ACOPF

(𝑷𝑶𝑷 − ℂ)

Conversion to

𝑷𝑶𝑷 −ℝ

using
rectangular

form

Computation
of feasible

solutions with
AMPL and

Knitro

31

Resolution of ACOPF

PSSE

Grid

Optimization

Competition

…

Computation
of lower

bounds using
Lasserre
hiearchySecond-Order Cone

Programming (SOCP)

relaxations

• Tool for Polynomial Optimization Problems with Complex numbers (𝑃𝑂𝑃−ℂ).
In addition to the local resolution (JuMP, AMPL), the Lasserre hierarchy for (𝑃𝑂𝑃−
ℂ) is implemented with several options to compute lower bounds.

• The application to Optimal Power Flow problems in Alternating Current
(ACOPF) demonstrates the convenience of such a toolbox. May be convenient for
other problems.

• Still in development

- Creation of Julia packages?

- Contribution into existing Julia packages (PolyJuMP.jl, SumOfSquares.jl, MultivariatePolynomials.jl)?

⇒ We are looking for Julia developers to support RTE research around this tool.
32

Conclusion and prospects

Thank you for your attention!

Any questions?

{manuel.ruiz, julie.sliwak}@rte-france.com

gilles.bareilles@artelys.com

https://github.com/JulieSliwak/MathProgComplex.jl

