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A tool for Polynomial

Optimization Problems with
Complex variables (POP — ()




@  polynomial Optimization Problems with
Complex Variables (POP — Q)

min z PagZ 2P
ap

s. t. Zpéﬁ?azﬁ >0 Vi=1L1l.p
aB

z € C?

« Optimize a generic complex multivariate polynomial function, subject to some
complex polynomial equality and inequality constraints.

« A complex multivariate polynomial is a polynomial whose variables and coefficients

are complex numbers. .



&

A modeler for Polynomial Optimization
Problems with Complex variables (POP — C)

Our modeler provides a structure and methods for working with (POP — Q).
The algebraic operations (+, =, *, /, conj, |.|) are implemented.

The base type is Variable, from which Exponents and Polynomial can
be constructed by calling the respective constructors or with algebraic
operations.

The Point type holds the variables at which polynomials can be evaluated.
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& Basic structures

Variable A pair (String, Type) where x = Variable("x", Complex)
Type clan be Complex, Real y = Variable("y", Complex)
or Boo

w = Variable("w", Real)
u = Variable("binary", Bool)

Exponent A product of Variables —a; B expol = xzconj(y)3,
l_‘ Zi 4 expo2 = xy
l

Polynomial A sum of Exponents times Bk,

complex coefficient Z Ck | “Zkl lzkl p(x,y) = (1 + 4im)expol + 3expo2

ki

Point A dictionary (variable => Zq value, pt = Dict(x = 1+ 2im,y = 3im)

value) to evaluate a N .

polynomial N :

Zy valuey,
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evaluate(p, pt) = —145 + 28im



@ Polynomial Optimization Problems

Constraint A Polynomial with complex bounds

Problem min
several Variables s.t.

(POP — C) a Polynomial objective
several named Constraints

Variable("x", Conplex) =T
...'-.'H-]_._-ll'_.ll':'t Vo, RE‘dl} __'Z:Jti'-iE":ti"-."'E.r[:pb_, p_t::bj:]l

- _. = — I_ }_ ::: _‘ .-:: I___ _:_ E 5 i'_ll . - I .
- ob] bs2(x) + abs2(y) + 2 add constraint!(pb, "Cstr

p cstrl = 3*x +y + 2

, s . _ straint!(pb, "Cstr
p cstr2 = abs2(y) + 5*x*y + 2

D add constraint!(pb, “"Cstr
p _cstr3 conj(x)*y

1
2

m
m

3x+y+2<3+5im

xX +y? + 2

3x+y+2<3+5im
2—im<y?+5xy+2<3+7im

xy=20
xeCyeR

, p_cstrl << 3+51im)

2

2-im <<

p_cstr2 << 3+71im)

2 == I.:’p)




& Conversion to real numbers

Method to convert (POP — C) to (POP — R) using rectangular form:

(1-19) (1+1i)_
2 1T "1 pb_cpix2real

s.t. 095 <vv <105
v €EC

min lee + vﬂm
s.t. 095 < vip, + vi,, < 1.05
ViresV1irm € R

min

("VOLT _1",Complex ':.
i Vi+(1+im)*®

el pesl = pd gl ligraeke LRL7




© Conversion to real numbers
Method to convert (POP — C) to (POP — R) using rectangular form:

(1-19) (1+1i)_
2 1T "1 pb_cpix2real

s.t. 095<vv <105
v €EC

min Vige + Vimm
s.t. 095 < vip, + vi,, < 1.05
ViresV1irm € R

min

Future work: conversion using polar form
(1-19) (1+i0)_

min 5 vt > 2 min  1,(cos(6,) + sin(6,))
= <r:<
S.t. 095 < (V) < 105 S.t. 095 =1 = 105
7,0 ER

1716(:



& Resolution

m, jumpvar = get JuMP_cartesian_model(pb, solver)

solve(m)

Final objective value = 1.45883471040128e+003
Final feasibility error (abs /rel) = 1.44e-007 / 1.15e-009
Final optimality error (abs/rel) = 3.04e-007/3.21e-011

# of iterations = 15
# of CG iterations = 7
# of function evaluations 24

# of Hessian evaluations 15
Total program time (secs) 0.198 ( 0.203 CPU time)
Time spent in evaluations (secs) = 0.163

# of gradient evaluations = 16

Problem Characteristics

Objective goal: Minimize

Number of variables: 18
bounded below only: 0
bounded above only: 0
bounded below and above: 0
fixed: 0
free: 18

Number of constraints: 27
linear equalities: 0
nonlinear equalities: 12
linear one-sided inequalities: 0
nonlinear one-sided inequalities: 0
linear two-sided inequalities: 0
nonlinear two-sided inequalities: 15

Number of nonzeros in Jacobian:

126

Number of nonzeros in Hessian: 54
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Resolution

AMPL

m, jumpvar = get JuMP_cartesian_model(pb, solver)

solve(m)

export_to _dat(pb, amplexportpath, point)

run_knitro(amplexportpath, amplscriptpath)

pt_knitro = read_Knitro_output(amplexportpath, pb)

feas,ctr = get _minslack(pb, pt_knitro)
objective = get objective(pb, pt_knitro)

Final objective value = 1.45883471040128e+003
Final feasibility error (abs /rel) = 1.44e-007 / 1.15e-009
Final optimality error (abs/rel) = 3.04e-007/3.21e-011

# of iterations = 15

# of CG iterations = 7

# of function evaluations = 24

# of gradient evaluations = 16

# of Hessian evaluations = 15

Total program time (secs) = 0.198 ( 0.203 CPU time)
Time spent in evaluations (secs) = 0.163

Final objective value = 1.45883471040144e+003
Final feasibility error (abs / rel) = 1.43e-007 / 1.15e-009
Final optimality error (abs/rel) = 3.03e-007 / 3.20e-011

# of iterations = 15

# of CG iterations = 7

# of function evaluations = 24

# of gradient evaluations = 16

# of Hessian evaluations = 15

Total program time (secs) = 0.005 ( 0.000 CPU time)
Time spent in evaluations (secs) = 0.001

18 variables, 27 non linear constraints
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Resolution

AMPL

m, jumpvar = get JuMP_cartesian_model(pb, solver)

solve(m)

export_to _dat(pb, amplexportpath, point)

run_knitro(amplexportpath, amplscriptpath)

pt_knitro = read_Knitro_output(amplexportpath, pb)

feas,ctr = get _minslack(pb, pt_knitro)
objective = get objective(pb, pt_knitro)

Final objective value = 1.33980721247613e+005
Final feasibility error (abs /rel) = 1.58e-008 / 4.09e-012
Final optimality error (abs/rel) = 2.14e-006/2.14e-012

# of iterations = 48

# of CG iterations = 24

# of function evaluations = 49

# of gradient evaluations = 49

# of Hessian evaluations = 48

Total program time (secs) = 26.224( 26.000 CPU time)
Time spent in evaluations (secs) =  24.457

Final objective value = 1.33980721261059e+005
Final feasibility error (abs / rel) = 4.21e-007 / 1.09e-010
Final optimality error (abs/rel) = 5.41e-004/5.99e-010

# of iterations = 47

# of CG iterations = 24

# of function evaluations = 48

# of gradient evaluations = 48

# of Hessian evaluations = a7

Total program time (secs) = 2.548 ( 2.531 CPU time)
Time spent in evaluations (secs) = 1.093

5378 variables, 8607 non linear constraints
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Lasserre hierarchy for (POP — ()




@SemiDefinite Programming (SDP) relaxations

(POP — C)?

g

\

of (POP — (C)
min flz) = z fcgﬁ ZzP
ap
s.t.  gi(z2) = Zgéﬁéazﬁ >0 Vi=1l.m
aB
ze(C"
U

Several SDP relaxations tighter and tighter (convergent hierarchy)

min
(SDP)

C-X

XZ*0

m
4-X<b Vi=1l.m (dSDP) 4 ZAiyi+S=C
i
S

(max by

=0 14



& Moment matrices

_ ~1  d\T
zg=01 2z, zy .. Zy 12371 z9)

My(z) = zgzk

Order d 0 1 2
Zg (1) 1 z; zp) 1 z1 zp zz, z{ z5)
My (z) (D 1z Zy ( 1 z Zy Z12Z; zf z3 \
Z1 |Z1|2 Z1Z Zy |Z1|2 Z12, |Z1|222 |Z1|221 71222
Zy ZpZq |Zz|2 Zy; Zy7p |Zz|2 |Zz|ZZ1 22212 |Zz|222
Z1Z, |Z1|252 |Zz|221 |Z1|2|Zz|2 |Z1|ZZ152 |Zz|25122
2 o— -2 2= 4 =22
\21 |z1]%2, Z1Z 121142, 2, |z, | Z1Zy )
-2 -2 — = -2
Zy ZyZ1 |Zz|222 |Zz|ZZ1ZZ Z2Z12 |Zz|4

Increasing the order improves the quality of the relaxation but increases
significantly the size of the problem. 15




min
S.t.

SDP relaxation

f(2 min f(@)
gi(2)=0 vi=1.m & <{st gi(@DMy(2) >0 Vi=1l.m
zeC" My(y) = 242}

Let us denote y, 5 = My(2)[a, f]

min
< { S.t.

fO)
Md_ki(giy) 0 Vi=1.m

My(y) = 2474
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min f(@
s.t. g(z)=0 Vi=1l.m <
zeCt

Let us denote y,5 = My(2) [, B]
(min f)

) Ma(y) >0
rank(My(y)) =1

|

min
S.t.

sit. My (giy) 20  Vi=1l.m

SDP relaxation

f@
Gi(@DMy_(2) >0 Vi=1.m

My(y) = Zng

17



ze(C"

min f(@
s.t. g(z)=0 Vi=1l.m <

Let us denote y, 5 = My(2)[a, f]

(min f)
sit. My (giy) 0  Vi=1l.m

= 4
{ My(y) =0
\

rantd{ M) =1

min
S.t.

SDP relaxation

f@
Gi(@DMy_(2) >0 Vi=1.m

My(y) = Zng
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min
S.t.

SDP relaxation

f@

min

9;(z2) =0 Vvi=1L.m &

ze(C"

Let us denote y, 5 = My(2)[a, f]

(min

S.t.

|

f)
Md—ki(giy) =0 Vi =

My(y) > 0
rank(My(y)) =1

1.m

My(y) =0
Order d relaxation

f(@)
Gi(@DMy_(2) >0 Vi=1.m
My(y) = Zng
min f)
s.t. My, (gy) 20 Vi=1l.m
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Available options

Lasserre hierarchy is workable on complex or real problems.
Sparsity is exploited: the set of exponents can be split into smaller cliques.

Multi-ordered hierarchy is possible: different orders can be applied on
different constraints.

Some symmetries can be speficied to simplify the problems (for example
if x solution & —x solution).
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(POP — C)

Workflow process

(

\.

Lasserre
Hierarchy
module

(sparse, multi-
order...)

\

J

(

\.

Chordal
extension and
clique
decomposition

~

SDP relaxation
(primal or dual)

J

\.

J

4 , )
Resolution with
Mosek.jl

OR

Export to use
another

language/solver
\_ guag J
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Application to Optimal Power
Flow in Alternating Current




® Context and motivations

system operator which provides
economical, reliable and clean
access to electrical power.

T
« RTE is the French transmission fafg‘ -

[

« Power transmission networks in
Alternating Current involve

complex quantities (voltage,
current, power flows, etc).

« RTE needs tools for (POP-C) to
reduce the time spent in testing
methods




® Optimal Power Flow in Alternating Current

Variables: ggen
« V, €C, Vn € N:voltage at bus n 1
- SJ9°" € C,vn € G c N: power at generator bus n (G: set of generators) v,

Constraints:
« Power flow equations Vn € N :

Siead e SOy = Y spestw) = sge

N I1=(n,d) l=(o,n)

k= _

S |+ Generator constraints: Sp*" < 5" < S vn € G L= (0,d)

5< Voltage magnitude constraints: (I/;{”‘")z < |V,|? < (y")2yneN ] ’ [
_ 1 2 .

2 (+ Thermal limits on branches: (5" (V)| JSEest|” < ()2 vie L serig sgtest

T

0p)

Minimization of active power generation cost: min Y, ;. ¢, (Real(Sg")) N



Matpower

PSSE

Grid
Optimization
L Competition )

Resolution of ACOPF

ACOPF
(POP — ()

-
Conversion to

(POP — R)

using
rectangular

form
\_

\

7

J

\

Computation
of feasible
solutions with
AMPL and
Knitro

Computation
of lower
bounds using
Lasserre
hierarchy
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®Results for the Grid Optimization Competition

« Challenge launched by ARPA-E (Advanced Research Projects Agency-Energy)
« The problem to solve is an ACOPF in which some contigencies are anticipated.

« It can be formulated as a Mixed-Integer Polynomial Optimization Problem with
Complex numbers (MIPOP — C).

Dataset # of # of # of real # of # of # of # of solved
buses contingencies variables constraints nonzeros in | nonzeros in scenarios
Jacobian Hessian

IEEE14 92 207 937 245 90/100
Modified_IEEE14 14 1 92 203 905 237 84/100
RTS96 73 10 4784 12157 49838 7199 90/100

More information: https://gocompetition.energy.gov/ 26
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Future works




Matpower

PSSE

Grid
Optimization
L Competition )

Resolution of ACOPF

e p e _ N
Conversion to
ACOPF (POP — R)
(POP — () using
rectangular
form
\_ J

Collaboration with Carleton Coffrin to integrate
a power mgdel in complex variables in
PowerModeéls.jl (a Julia/JuMP package for
Steady-State Power Network Optimization)

Computation
of feasible
solutions with
AMPL and
Knitro

( )

Computation
of lower
bounds using
Lasserre
hiearchy

\




Matpower

PSSE

Grid
Optimization
L Competition )

Resolution of ACOPF

ACOPF
(POP — ()

7 _ ™\
Conversion to

(POP — R)

using
rectangular

7

form
\S /)

Polar form

\

Computation
of feasible
solutions with
AMPL and
Knitro

Computation
of lower
bounds using
Lasserre
hiearchy
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Matpower

PSSE

Grid
Optimization
L Competition )

Resolution of ACOPF

ACOPF
(POP — ()

Resolution
with JuMP

7

\.

\
Conversion to

(POP — R)

using
rectangular
form

V.

Computation
of feasible
solutions with
AMPL and
Knitro

N

Computation
of lower
bounds using
Lasserre
hiearchy




Matpower

PSSE

Grid
Optimization
L Competition )

Resolution of ACOPF

ACOPF
(POP — ()

4 _ N
Conversion to

(POP — R)

using
rectangular

form
\_ Yy,

Second-Order Cone
Programming (SOCP)
relaxations

s

\

Computation
of feasible
solutions with
AMPL and
Knitro

Computation
of lower
bounds using
Lasserre
hiearchy

31



Conclusion and prospects

Tool for Polynomial Optimization Problems with Complex numbers (POP — Q).
In addition to the local resolution (JuUMP, AMPL), the Lasserre hierarchy for (POP —
C) is implemented with several options to compute lower bounds.

The application to Optimal Power Flow problems in Alternating Current
(ACOPF) demonstrates the convenience of such a toolbox. May be convenient for
other problems.

Still in development
Creation of Julia packages?

Contribution into existing Julia packages (PolyJuMP.jl, SumOfSquares.jl, MultivariatePolynomials.jl)?

= We are looking for Julia developers to support RTE research around this tool.
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Thank you for your attention!

Any questions?

{manuel.ruiz, julie.sliwak}@rte-france.com
gilles.bareilles@artelys.com

https://github.com/JulieSliwak/MathProgComplex.|jl



