

JuMP-dev workshop 2018

A Julia JuMP-based module for polynomial optimization with complex variables applied to ACOPF

Gilles Bareilles, Manuel Ruiz, Julie Sliwak

- 1. MathProgComplex.jl: A toolbox for Polynomial Optimization Problems with Complex variables (POP C)
- 2. The Lasserre hierarchy for $(POP \mathbb{C})$
- 3. Application to Optimal Power Flow in Alternating Current (ACOPF)
- 4. Conclusion and future work

https://github.com/JulieSliwak/MathProgComplex.jl (MIT license)

A tool for Polynomial Optimization Problems with Complex variables $(POP - \mathbb{C})$

Polynomial Optimization Problems with Complex Variables $(POP - \mathbb{C})$

$$\begin{array}{ll} \min & \sum_{\alpha,\beta} p^0_{\alpha,\beta} \, \overline{z}^{\alpha} z^{\beta} \\ s.t. & \sum_{\alpha,\beta} p^i_{\alpha,\beta} \, \overline{z}^{\alpha} z^{\beta} \ge 0 \quad \forall i = 1..p \\ & z \in \mathbb{C}^n \end{array}$$

- Optimize a generic complex multivariate **polynomial** function, subject to some complex polynomial equality and inequality constraints.
- A complex multivariate polynomial is a polynomial whose variables and coefficients are complex numbers.

A modeler for Polynomial Optimization Problems with Complex variables $(POP - \mathbb{C})$

- Our modeler provides a structure and methods for working with $(POP \mathbb{C})$.
- The algebraic operations (+, -, *, /, conj, |.|) are implemented.

Rie

- The base type is **Variable**, from which **Exponents** and **Polynomial** can be constructed by calling the respective constructors or with algebraic operations.
- The **Point** type holds the variables at which polynomials can be evaluated.

Basic structures

Structure	Definition	Notation	Examples			
Variable	A pair (String, Type) where Type can be Complex, Real or Bool	Ζ	<pre>x = Variable("x", Complex) y = Variable("y", Complex) w = Variable("w", Real) u = Variable("binary", Bool)</pre>			
Exponent	A product of Variables	$\prod_i \overline{z_i}^{\alpha_i} z_i^{\beta_i}$	$expo1 = x^{2} conj(y)^{3},$ $expo2 = xy$			
Polynomial	A sum of Exponents times complex coefficient	$\sum c_k \prod_{k_i} \overline{z_{k_i}}^{\alpha_{k_i}} z_{k_i}^{\beta_{k_i}}$	p(x, y) = (1 + 4im)expo1 + 3expo2			
Point	A dictionary (variable => value) to evaluate a polynomial	$\begin{pmatrix} z_1 \\ \vdots \\ z_k \end{pmatrix} = \begin{pmatrix} value_1 \\ \vdots \\ value_k \end{pmatrix}$	$pt = Dict(x \Rightarrow 1 + 2im, y \Rightarrow 3im)$			
$evaluate(p, pt) = -145 + 28im^{6}$						

Polynomial Optimization Problems

Structure	Definition	Examples			
Constraint	A Polynomial with complex bounds	$3x + y + 2 \le 3 + 5im$			
Problem	$(POP - \mathbb{C})$ several Variables a Polynomial objective several named Constraints	$ \begin{array}{ll} \min & x\overline{x} + y^2 + 2 \\ s.t. & 3x + y + 2 \leq 3 + 5im \\ 2 - im \leq y^2 + 5xy + 2 \leq 3 + 7im \\ \overline{x}y = 0 \\ x \in \mathbb{C}, y \in \mathbb{R} \end{array} $			

x = Variable("x", Complex) y = Variable("y", Real) p_obj = abs2(x) + abs2(y) + 2 p_cstr1 = 3*x + y + 2 p_cstr2 = abs2(y) + 5*x*y + 2 p_cstr3 = conj(x)*y

pb = Problem()

```
set_objective!(pb, p_obj)
add_constraint!(pb, "Cstr 1", p_cstr1 << 3+5im)
add_constraint!(pb, "Cstr 2", 2-im << p_cstr2 << 3+7im)
add_constraint!(pb, "Cstr 3", p_cstr3 == 0)</pre>
```


Conversion to real numbers

Method to convert (POP – \mathbb{C}) to (POP – \mathbb{R}) using rectangular form:

$$\begin{array}{ll} \min & \frac{(1-i)}{2}v_1 + \frac{(1+i)}{2}\overline{v}_1 \\ \text{s.t.} & 0.95 \leq v_1\overline{v_1} \leq 1.05 \\ & v_1 \in \mathbb{C} \end{array} \xrightarrow{ \text{pb_cplx2real}} \begin{array}{ll} \min & v_{1Re} + v_{1Im} \\ \text{s.t.} & 0.95 \leq v_{1Re}^2 + v_{1Im}^2 \leq 1.05 \\ & v_{1Re}, v_{1Im} \in \mathbb{R} \end{array}$$

V1 = Variable("VOLT_1",Complex)
p_obj = 0.5*((1-im)*V1+(1+im)*conj(V1))
p_ctr1 = abs2(V1)
problem_poly=Problem()
add_variable!(problem_poly,V1)
add_constraint!(problem_poly, "ctr1", 1 << p_ctr1 << 1)
set_objective!(problem_poly, p_obj)</pre>

pb_poly_real = pb_cplx2real(problem_poly)

Conversion to real numbers

Method to convert (POP – \mathbb{C}) to (POP – \mathbb{R}) using rectangular form:

$$\begin{array}{ll} \min & \frac{(1-i)}{2}v_1 + \frac{(1+i)}{2}\overline{v}_1 \\ \text{s.t.} & 0.95 \leq v_1\overline{v_1} \leq 1.05 \\ & v_1 \in \mathbb{C} \end{array} \xrightarrow{ \text{pb_cplx2real}} \begin{array}{ll} \min & v_{1Re} + v_{1Im} \\ \text{s.t.} & 0.95 \leq v_{1Re}^2 + v_{1Im}^2 \leq 1.05 \\ & v_{1Re}, v_{1Im} \in \mathbb{R} \end{array}$$

Future work: conversion using polar form

$$\begin{array}{ll} \min & \frac{(1-i)}{2}v_1 + \frac{(1+i)}{2}\overline{v}_1 & \min & r_1(c) \\ s.t. & 0.95 \leq v_1\overline{v_1} \leq 1.05 & \longrightarrow & s.t. & 0.9 \\ & v_1 \in \mathbb{C} \end{array}$$

$$\begin{array}{ll} \min & r_1(\cos(\theta_1) + \sin(\theta_1)) \\ s.t. & 0.95 \le r_1^2 \le 1.05 \\ & r_1, \theta_1 \in \mathbb{R} \end{array}$$

Resolution

JuMP

m, jumpvar = get_JuMP_cartesian_model(pb, solver)

solve(m)

Final objective value = $1.45883471040128e+003$ Final feasibility error (abs / rel) = $1.44e-007 / 1.15e-009$ Final optimality error (abs / rel) = $3.04e-007 / 3.21e-011$						
# of iterations =	15		01210011			
# of CG iterations	=	7				
# of function evaluations	=	24				
# of gradient evaluations	=	16				
# of Hessian evaluations	=	15				
Total program time (secs)	=	0.198 (0.203 CPU time)			
Time spent in evaluations (se	ecs) =	0.163	,			

Problem Characteristics	
Objective goal: Minimize	
Number of variables:	18
bounded below only:	0
bounded above only:	0
bounded below and above:	0
fixed: 0	
free: 18	
Number of constraints:	27
linear equalities:	0
nonlinear equalities:	12
linear one-sided inequalities:	0
nonlinear one-sided inequalities	s: 0
linear two-sided inequalities:	0
nonlinear two-sided inequalities	: 15
Number of nonzeros in Jacobian:	
126	
Number of nonzeros in Hessian:	54

Resolution

JuMP	AMPL		
m, jumpvar = get_JuMP_cartesian_model(pb, solver)	<pre>export_to_dat(pb, amplexportpath, point)</pre>		
solve(m)	<pre>run_knitro(amplexportpath, amplscriptpath)</pre>		
	<pre>pt_knitro = read_Knitro_output(amplexportpath, pb)</pre>		
	<pre>feas,ctr = get_minslack(pb, pt_knitro) objective = get_objective(pb, pt_knitro)</pre>		
Final objective value= $1.45883471040128e+003$ Final feasibility error (abs / rel) = $1.44e-007 / 1.15e-009$ Final optimality error (abs / rel) = $3.04e-007 / 3.21e-011$ # of iterations= 15 # of CG iterations= 7 # of function evaluations= 24 # of gradient evaluations= 16 # of Hessian evaluations= 15 Total program time (secs)= $0.198 (0.203 \text{ CPU time})$ Time spent in evaluations (secs)= 0.163	Final objective value= $1.45883471040144e+003$ Final feasibility error (abs / rel) = $1.43e-007 / 1.15e-009$ Final optimality error (abs / rel) = $3.03e-007 / 3.20e-011$ # of iterations= 15 # of CG iterations= 7 # of function evaluations= 24 # of gradient evaluations= 16 # of Hessian evaluations= 15 Total program time (secs)= $0.005 (0.000 \text{ CPU time})$ Time spent in evaluations (secs)= 0.001		

Resolution

JuMP	AMPL
<pre>m, jumpvar = get_JuMP_cartesian_model(pb, solver)</pre>	<pre>export_to_dat(pb, amplexportpath, point)</pre>
solve(m)	<pre>run_knitro(amplexportpath, amplscriptpath)</pre>
	<pre>pt_knitro = read_Knitro_output(amplexportpath, pb)</pre>
	<pre>feas,ctr = get_minslack(pb, pt_knitro) objective = get_objective(pb, pt_knitro)</pre>
Final objective value= $1.33980721247613e+005$ Final feasibility error (abs / rel) = $1.58e-008 / 4.09e-012$ Final optimality error (abs / rel) = $2.14e-006 / 2.14e-012$ # of iterations= 48 # of CG iterations= 24 # of function evaluations= 49	Final objective value= $1.33980721261059e+005$ Final feasibility error (abs / rel) = $4.21e-007 / 1.09e-010$ Final optimality error (abs / rel) = $5.41e-004 / 5.99e-010$ # of iterations= 47 # of CG iterations= 24 # of function evaluations= 48
# of gradient evaluations=49# of Hessian evaluations=48Total program time (secs)=26.224 (26.000 CPU time)Time spent in evaluations (secs)=24.457	# of gradient evaluations=48# of Hessian evaluations=47Total program time (secs)=2.548 (2.531 CPU time)Time spent in evaluations (secs)=1.093

Lasserre hierarchy for $(POP - \mathbb{C})$

SemiDefinite Programming (SDP) relaxations of $(POP - \mathbb{C})$

$$(POP - \mathbb{C}) \begin{cases} \min \quad f(z) = \sum_{\alpha,\beta} f^0_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} \\ s.t. \quad g_i(z) = \sum_{\alpha,\beta} g^i_{\alpha,\beta} \overline{z}^{\alpha} z^{\beta} \ge 0 \quad \forall i = 1..m \\ z \in \mathbb{C}^n \\ \Downarrow \end{cases}$$

Several SDP relaxations tighter and tighter (convergent hierarchy)

$$(SDP) \begin{cases} \min & C \cdot X \\ & A_i \cdot X \le b_i \quad \forall i = 1..m \\ & X \ge 0 \end{cases} \quad (dSDP) \begin{cases} \max & b^T y \\ & \sum_{i}^m A_i y_i + S = C \\ & S \ge 0 \end{cases}$$

14

Moment matrices

$$z_d = (1 \quad z_1 \quad z_2 \quad \dots \quad z_{n-1} z_n^{d-1} \quad z_n^d)^T$$

 $\mathcal{M}_d(z) = z_d z_d^H$

Order d	0	1	2
Z _d	(1)	$(1 \ z_1 \ z_2)$	$(1 z_1 z_2 z_1 z_2 z_1^2 z_2^2)$
$\mathcal{M}_d(z)$	(1)	$\begin{pmatrix} 1 & z_1 & z_2 \\ \overline{z}_1 & z_1 ^2 & \overline{z}_1 z_2 \\ \overline{z}_2 & \overline{z}_2 z_1 & z_2 ^2 \end{pmatrix}$	$\begin{pmatrix} 1 & z_1 & z_2 & z_1z_2 & z_1^2 & z_2^2 \\ \overline{z}_1 & z_1 ^2 & \overline{z}_1z_2 & z_1 ^2z_2 & z_1 ^2z_1 & \overline{z}_1z_2^2 \\ \overline{z}_2 & \overline{z}_2z_1 & z_2 ^2 & z_2 ^2z_1 & \overline{z}_2z_1^2 & z_2 ^2z_2 \\ \overline{z}_1\overline{z}_2 & z_1 ^2\overline{z}_2 & z_2 ^2\overline{z}_1 & z_1 ^2 z_2 ^2 & z_1 ^2z_1\overline{z}_2 & z_2 ^2\overline{z}_1z_2 \\ \overline{z}_1^2 & z_1 ^2\overline{z}_1 & \overline{z}_1^2z_2 & z_1 ^2\overline{z}_1z_2 & z_1 ^4 & \overline{z}_1^2z_2^2 \\ \overline{z}_2^2 & \overline{z}_2^2z_1 & z_2 ^2\overline{z}_2 & z_2 ^2\overline{z}_1\overline{z}_2 & \overline{z}_2^2z_1^2 & z_2 ^4 \end{pmatrix}$

Increasing the order improves the quality of the relaxation but **increases significantly the size of the problem**. ¹⁵

$$\begin{cases} \min & f(z) \\ s.t. & g_i(z) \ge 0 \quad \forall i = 1..m \quad \Leftrightarrow \quad \begin{cases} \min & f(z) \\ s.t. & g_i(z)\mathcal{M}_{d-k_i}(z) \ge 0 \quad \forall i = 1..m \\ & \mathcal{M}_d(y) = z_d z_d^H \end{cases}$$

$$\Leftrightarrow \begin{cases} \min & f(y) \\ s.t. & \mathcal{M}_{d-k_i}(g_i y) \ge 0 \quad \forall i = 1..m \\ & \mathcal{M}_d(y) = z_d z_d^H \end{cases}$$

$$\begin{cases} \min & f(z) \\ s.t. & g_i(z) \ge 0 \quad \forall i = 1..m \quad \Leftrightarrow \quad \begin{cases} \min & f(z) \\ s.t. & g_i(z)\mathcal{M}_{d-k_i}(z) \ge 0 \quad \forall i = 1..m \\ & \mathcal{M}_d(y) = z_d z_d^H \end{cases}$$

$$\Leftrightarrow \begin{cases} \min & f(y) \\ s.t. & \mathcal{M}_{d-k_i}(g_i y) \ge 0 & \forall i = 1..m \\ & & \begin{cases} \mathcal{M}_d(y) \ge 0 \\ rank(\mathcal{M}_d(y)) = 1 \end{cases} \end{cases}$$

$$\begin{cases} \min & f(z) \\ s.t. & g_i(z) \ge 0 \quad \forall i = 1..m \quad \Leftrightarrow \quad \begin{cases} \min & f(z) \\ s.t. & g_i(z)\mathcal{M}_{d-k_i}(z) \ge 0 \quad \forall i = 1..m \\ & \mathcal{M}_d(y) = z_d z_d^H \end{cases}$$

$$\Rightarrow \begin{cases} \min & f(y) \\ s.t. & \mathcal{M}_{d-k_i}(g_i y) \ge 0 & \forall i = 1..m \\ & \left\{ \begin{array}{c} \mathcal{M}_d(y) \ge 0 \\ rank(\mathcal{M}_d(y)) = 1 \end{array} \right. \end{cases}$$

$$\begin{cases} \min & f(z) \\ s.t. & g_i(z) \ge 0 \quad \forall i = 1..m \quad \Leftrightarrow \quad \begin{cases} \min & f(z) \\ s.t. & g_i(z)\mathcal{M}_{d-k_i}(z) \ge 0 \quad \forall i = 1..m \\ & \mathcal{M}_d(y) = z_d z_d^H \end{cases}$$

$$\Leftrightarrow \begin{cases} \min & f(y) \\ s.t. & \mathcal{M}_{d-k_i}(g_i y) \ge 0 \quad \forall i = 1..m \\ & \left\{ \begin{array}{cc} \mathcal{M}_d(y) \ge 0 \\ rank(\mathcal{M}_d(y)) = 1 \end{array} \right. \Rightarrow \begin{cases} \min & f(y) \\ s.t. & \mathcal{M}_{d-k_i}(g_i y) \ge 0 \quad \forall i = 1..m \\ & \mathcal{M}_d(y) \ge 0 \\ & Order \ d \ relaxation \end{cases}$$

Available options

- Lasserre hierarchy is workable on complex or real problems.
- **Sparsity** is exploited: the set of exponents can be split into smaller cliques.
- **Multi-ordered hierarchy** is possible: different orders can be applied on different constraints.
- Some **symmetries** can be speficied to simplify the problems (for example if *x* solution $\Leftrightarrow -x$ solution).

Workflow process

Application to Optimal Power Flow in Alternating Current

Context and motivations

- RTE is the French transmission system operator which provides economical, reliable and clean access to electrical power.
- Power transmission networks in Alternating Current involve complex quantities (voltage, current, power flows, etc).
- RTE needs tools for $(POP \mathbb{C})$ to reduce the time spent in testing methods

24

Optimal Power Flow in Alternating Current

Variables:

- $V_n \in \mathbb{C}$, $\forall n \in N$: voltage at bus n
- $S_n^{gen} \in \mathbb{C}, \forall n \in G \subset N$: power at generator bus n (G: set of generators) V_{γ}

Constraints:

• Power flow equations $\forall n \in N$:

$$S_n^{load} + \sum_{l=(n,d)} S_l^{orig}(V) - \sum_{l=(o,n)} S_l^{dest}(V) = S_n^{gen}$$

Safety constraints

- Generator constraints: $S_n^{min} \le S_n^{gen} \le S_n^{max} \forall n \in G$ Voltage magnitude constraints: $(V_n^{min})^2 \le |V_n|^2 \le (V_n^{max})^2 \forall n \in N$
- Thermal limits on branches: $|S_l^{orig}(V)|^2$, $|S_l^{dest}(V)|^2 \le (S_l^{max})^2 \forall l \in L$

l = (o, d) $o \rightarrow d$ $S_l^{orig} \qquad S_l^{dest}$

 V_8

 V_5

Minimization of active power generation cost: $\min \sum_{g \in G} c_g(Real(S_g^{gen}))$

Results for the Grid Optimization Competition

- Challenge launched by ARPA-E (Advanced Research Projects Agency-Energy)
- The problem to solve is an ACOPF in which some contigencies are anticipated.
- It can be formulated as a Mixed-Integer Polynomial Optimization Problem with Complex numbers ($MIPOP \mathbb{C}$).

Dataset	# of buses	# of contingencies	# of real variables	# of constraints	# of nonzeros in Jacobian	# of nonzeros in Hessian	# of solved scenarios
IEEE14	14	1	92	207	937	245	90/100
Modified_IEEE14	14	1	92	203	905	237	84/100
RTS96	73	10	4784	12157	49838	7199	90/100

More information: <u>https://gocompetition.energy.gov/</u>

Conclusion and prospects

- Tool for Polynomial Optimization Problems with Complex numbers (POP − ℂ). In addition to the local resolution (JuMP, AMPL), the Lasserre hierarchy for (POP − ℂ) is implemented with several options to compute lower bounds.
- The application to **Optimal Power Flow problems in Alternating Current** (ACOPF) demonstrates the convenience of such a toolbox. May be convenient for other problems.
- Still in development
- Creation of Julia packages?
- Contribution into existing Julia packages (PolyJuMP.jl, SumOfSquares.jl, MultivariatePolynomials.jl)?
- \Rightarrow We are looking for Julia developers to support RTE research around this tool.

Thank you for your attention!

Any questions?

{manuel.ruiz, julie.sliwak}@rte-france.com gilles.bareilles@artelys.com

https://github.com/JulieSliwak/MathProgComplex.jl