
Pajarito Solver for Mixed-Integer Convex Optimization

Chris Coey

Operations Research Center
Massachusetts Institute of Technology

JuMP Developers Meetup
June 12, 2017

Collaborators Miles Lubin & Juan Pablo Vielma (MIT),
Emre Yamangil & Russell Bent (LANL)

Repository github.com/JuliaOpt/Pajarito.jl

github.com/JuliaOpt/Pajarito.jl


1 Mixed-integer convex optimization

2 Conic outer approximation

3 Pajarito mixed-integer conic solver

4 The future of Pajarito

5 An interactive look at the codebase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 2 / 36



1 Mixed-integer convex optimization

2 Conic outer approximation

3 Pajarito mixed-integer conic solver

4 The future of Pajarito

5 An interactive look at the codebase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 3 / 36



Mixed-integer convex optimization (MICP)

a.k.a ‘convex mixed-integer nonlinear programming’ [BKL12]

problems that are convex except for integrality constraints

generalizes convex optimization and mixed-integer linear optimization

Many useful nonconvex sets are representable as feasible sets of MICPs,
e.g. finite unions of compact convex sets [LZV16]

-2 -1 0 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 4 / 36



Mixed-integer convex optimization (MICP)

a.k.a ‘convex mixed-integer nonlinear programming’ [BKL12]

problems that are convex except for integrality constraints

generalizes convex optimization and mixed-integer linear optimization

Many useful nonconvex sets are representable as feasible sets of MICPs,
e.g. finite unions of compact convex sets [LZV16]

-2 -1 0 1 2 3

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 4 / 36



MICP general form and applications

min
x∈RN

〈c , x〉 : (linear objective)

x ∈ S (convex set constraints)

xi ∈ Z ∀i ∈ [I ] (integrality constraints)

quadratic facility location, stochastic service system design, cutting
stock and constrained layout problems [BKL12]

optimal discrete experimental design; see Appendix 6

trajectory planning with spatial segmentation and sum-of-squares
(SOS) control theory [DT15]

portfolios with nonlinear risk measures and combinatorial constraints

transistor gate-sizing for electrical circuit design [BKVH07]

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 5 / 36



MICP general form and applications

min
x∈RN

〈c , x〉 : (linear objective)

x ∈ S (convex set constraints)

xi ∈ Z ∀i ∈ [I ] (integrality constraints)

quadratic facility location, stochastic service system design, cutting
stock and constrained layout problems [BKL12]

optimal discrete experimental design; see Appendix 6

trajectory planning with spatial segmentation and sum-of-squares
(SOS) control theory [DT15]

portfolios with nonlinear risk measures and combinatorial constraints

transistor gate-sizing for electrical circuit design [BKVH07]

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 5 / 36



A simple polyhedral outer approximation algorithm

mixed-integer linear optimization (MILP) solvers (such as SCIP,
Gurobi, CPLEX) are mature, powerful, and numerically stable,
enabling reliable cutting plane algorithms

polyhedral outer approximation allows leveraging this power for MICP

Build MILP OA model P by replacing S with a polyhedral relaxation

1: solve P, let x? be optimal solution
2: if x? is ‘close’ to S then
3: return x?

4: else
5: find separating hyperplane (y , z)
6: update P with cut 〈x , y〉 ≥ z
7: end if

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 6 / 36



A simple polyhedral outer approximation algorithm

mixed-integer linear optimization (MILP) solvers (such as SCIP,
Gurobi, CPLEX) are mature, powerful, and numerically stable,
enabling reliable cutting plane algorithms

polyhedral outer approximation allows leveraging this power for MICP

Build MILP OA model P by replacing S with a polyhedral relaxation

1: solve P, let x? be optimal solution
2: if x? is ‘close’ to S then
3: return x?

4: else
5: find separating hyperplane (y , z)
6: update P with cut 〈x , y〉 ≥ z
7: end if

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 6 / 36



Conic extended formulations

an extended formulation (EF) for x ∈ S is an equivalent
representation as a projection of a set in a higher dimensional space

EFs can greatly accelerate OA algorithms [TS05, VDHL16]

[LYBV16] noted that disciplined convex programming (DCP)
implementations (such as Convex.jl) can automate the construction
of convex conic extended formulations

all 333 MICPs in MINLPLIB2 can be encoded with about 5 cone types

with cones, we are not limited to sets defined by smooth, differentiable
convex functions (many other MICP algorithms assume this)

In [CLV17] we detail a conic framework for solving MICPs via OA and
extended formulations, and implement our algorithms in Pajarito

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 7 / 36



Conic extended formulations

an extended formulation (EF) for x ∈ S is an equivalent
representation as a projection of a set in a higher dimensional space

EFs can greatly accelerate OA algorithms [TS05, VDHL16]

[LYBV16] noted that disciplined convex programming (DCP)
implementations (such as Convex.jl) can automate the construction
of convex conic extended formulations

all 333 MICPs in MINLPLIB2 can be encoded with about 5 cone types

with cones, we are not limited to sets defined by smooth, differentiable
convex functions (many other MICP algorithms assume this)

In [CLV17] we detail a conic framework for solving MICPs via OA and
extended formulations, and implement our algorithms in Pajarito

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 7 / 36



1 Mixed-integer convex optimization

2 Conic outer approximation

3 Pajarito mixed-integer conic solver

4 The future of Pajarito

5 An interactive look at the codebase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 8 / 36



Mixed-integer conic form

min
x∈RN

〈c , x〉 : (M)

bk − Akx ∈ Ck ∀k ∈ [M]

xi ∈ Z ∀i ∈ [I ]

CK+1, . . . , CM are polyhedral cones, e.g. R+, R−, {0}
C1, . . . , CK are closed convex nonpolyhedral cones, e.g.

L second-order cone (epi ‖·‖2)

E exponential cone (epi cl per exp)

P positive semidefinite cone (S+ on S)

Assume that if M is feasible then its optimal value is attained

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 9 / 36



Mixed-integer conic form

min
x∈RN

〈c , x〉 : (M)

bk − Akx ∈ Ck ∀k ∈ [M]

xi ∈ Z ∀i ∈ [I ]

CK+1, . . . , CM are polyhedral cones, e.g. R+, R−, {0}
C1, . . . , CK are closed convex nonpolyhedral cones, e.g.

L second-order cone (epi ‖·‖2)

E exponential cone (epi cl per exp)

P positive semidefinite cone (S+ on S)

Assume that if M is feasible then its optimal value is attained

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 9 / 36



Mixed-integer conic form

min
x∈RN

〈c , x〉 : (M)

bk − Akx ∈ Ck ∀k ∈ [M]

xi ∈ Z ∀i ∈ [I ]

CK+1, . . . , CM are polyhedral cones, e.g. R+, R−, {0}
C1, . . . , CK are closed convex nonpolyhedral cones, e.g.

L second-order cone (epi ‖·‖2)

E exponential cone (epi cl per exp)

P positive semidefinite cone (S+ on S)

Assume that if M is feasible then its optimal value is attained

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 9 / 36



Outer approximation with K∗ cuts

The dual cone of a closed convex cone is also a closed convex cone

K∗ = {z ∈ Rn : 〈y , z〉 ≥ 0, ∀y ∈ K}

Thus we can reformulate nonpolyhedral conic constraint k ∈ [K ] as an
infinite number of linear constraints - one for each dual cone point

bk − Akx ∈ Ck ⇔ 〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ C∗k

For OA, we instead choose a finite subset Zk of the dual cone points

〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ Zk ⊂ C∗k

If added for each k ∈ [K ], these K∗ cuts yield an MILP relaxation of M

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 10 / 36



Outer approximation with K∗ cuts

The dual cone of a closed convex cone is also a closed convex cone

K∗ = {z ∈ Rn : 〈y , z〉 ≥ 0, ∀y ∈ K}

Thus we can reformulate nonpolyhedral conic constraint k ∈ [K ] as an
infinite number of linear constraints - one for each dual cone point

bk − Akx ∈ Ck ⇔ 〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ C∗k

For OA, we instead choose a finite subset Zk of the dual cone points

〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ Zk ⊂ C∗k

If added for each k ∈ [K ], these K∗ cuts yield an MILP relaxation of M

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 10 / 36



Outer approximation with K∗ cuts

The dual cone of a closed convex cone is also a closed convex cone

K∗ = {z ∈ Rn : 〈y , z〉 ≥ 0, ∀y ∈ K}

Thus we can reformulate nonpolyhedral conic constraint k ∈ [K ] as an
infinite number of linear constraints - one for each dual cone point

bk − Akx ∈ Ck ⇔ 〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ C∗k

For OA, we instead choose a finite subset Zk of the dual cone points

〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ Zk ⊂ C∗k

If added for each k ∈ [K ], these K∗ cuts yield an MILP relaxation of M

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 10 / 36



Outer approximation with K∗ cuts

The dual cone of a closed convex cone is also a closed convex cone

K∗ = {z ∈ Rn : 〈y , z〉 ≥ 0, ∀y ∈ K}

Thus we can reformulate nonpolyhedral conic constraint k ∈ [K ] as an
infinite number of linear constraints - one for each dual cone point

bk − Akx ∈ Ck ⇔ 〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ C∗k

For OA, we instead choose a finite subset Zk of the dual cone points

〈bk − Akx , zk〉 ≥ 0 ∀zk ∈ Zk ⊂ C∗k

If added for each k ∈ [K ], these K∗ cuts yield an MILP relaxation of M

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 10 / 36



Obtaining K∗ cuts

There are various ways to choose K∗ cuts (not unique)

If we solve continuous conic subproblems, we can get an algorithm with
finite convergence guarantees, under some reasonable assumptions (see
Appendix 7 for a detailed branch and bound algorithm)

Define the following models

M the MICP problem

P the MILP OA model that we add K∗ cuts to

R the continuous relaxation of M

R(x) a restriction of R to the subspace in which the integer
variables are fixed to x1, . . . , xI

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 11 / 36



Obtaining K∗ cuts

There are various ways to choose K∗ cuts (not unique)

If we solve continuous conic subproblems, we can get an algorithm with
finite convergence guarantees, under some reasonable assumptions (see
Appendix 7 for a detailed branch and bound algorithm)

Define the following models

M the MICP problem

P the MILP OA model that we add K∗ cuts to

R the continuous relaxation of M

R(x) a restriction of R to the subspace in which the integer
variables are fixed to x1, . . . , xI

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 11 / 36



Obtaining K∗ cuts

There are various ways to choose K∗ cuts (not unique)

If we solve continuous conic subproblems, we can get an algorithm with
finite convergence guarantees, under some reasonable assumptions (see
Appendix 7 for a detailed branch and bound algorithm)

Define the following models

M the MICP problem

P the MILP OA model that we add K∗ cuts to

R the continuous relaxation of M

R(x) a restriction of R to the subspace in which the integer
variables are fixed to x1, . . . , xI

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 11 / 36



Geometric intuition

M: blue convex region intersected with purple dotted lines for integers
P: polyhedron under K∗ cuts intersected with purple dotted lines

1 solve R for dual z̄
2 add z̄ cut to P

1 solve P for x?

2 solve R(x?) for dual z̄
3 add z̄ cut to P

4 if R(x?) feasible, check
if x̄ is new incumbent

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 12 / 36



The continuous relaxation

The continuous conic relaxation of M is R

min
x

〈c , x〉 : (R)

bk − Akx ∈ Ck ∀k ∈ [M]

x ∈ RN

Using standard conic duality [BV04], the conic dual is R∗

max
z1,...,zK

−
∑
k∈[M]

〈bk , zk〉 : (R∗)

c +
∑
k∈[M]

AT
k zk ∈ {0}N

zk ∈ C∗k ∀k ∈ [M]

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 13 / 36



The continuous relaxation

The continuous conic relaxation of M is R

min
x

〈c , x〉 : (R)

bk − Akx ∈ Ck ∀k ∈ [M]

x ∈ RN

Using standard conic duality [BV04], the conic dual is R∗

max
z1,...,zK

−
∑
k∈[M]

〈bk , zk〉 : (R∗)

c +
∑
k∈[M]

AT
k zk ∈ {0}N

zk ∈ C∗k ∀k ∈ [M]

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 13 / 36



Relaxation and subproblem K∗ cuts

To obtain relaxation K∗ cuts

assume R is bounded

if R is infeasible then M is infeasible

if R is feasible, assume strong duality holds for R,R∗

exists primal-dual solutions with objective value C
from R∗ solution (z̄k)k∈[M], we derive K∗ cuts z̄k for k ∈ [K ]
guarantee that P’s value is no worse than C

To obtain subproblem K∗ cuts given a feasible MILP solution x? for P

note R(x?) is not unbounded

if R(x?) is feasible, case is analogous to above for R

if R(x?) is infeasible, we get a ray of R∗(x?) that defines K∗ cuts
excluding all x with the same integer assignment x1, . . . , xI

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 14 / 36



Relaxation and subproblem K∗ cuts

To obtain relaxation K∗ cuts

assume R is bounded

if R is infeasible then M is infeasible

if R is feasible, assume strong duality holds for R,R∗

exists primal-dual solutions with objective value C
from R∗ solution (z̄k)k∈[M], we derive K∗ cuts z̄k for k ∈ [K ]
guarantee that P’s value is no worse than C

To obtain subproblem K∗ cuts given a feasible MILP solution x? for P

note R(x?) is not unbounded

if R(x?) is feasible, case is analogous to above for R

if R(x?) is infeasible, we get a ray of R∗(x?) that defines K∗ cuts
excluding all x with the same integer assignment x1, . . . , xI

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 14 / 36



Algorithmic extensions

scaling of subproblem K∗ cuts to get convergence guarantees under
realistic assumptions about MILP solver tolerances

simple separation K∗ cuts for infeasible OA solutions

disaggregated extended formulation for L [VDHL16]

initial fixed K∗ cuts

for L, based on the `1 and `∞ bounds for `2
for P, an idea dual to the (scaled) diagonal dominance conditions for
PSD matrices described by [AH15]

extreme ray cuts, implemented for P based on eigendecompositions

L subproblem cuts for P, based on Schur complement [KKY03]

If using L cuts for P, the OA MIP model is an MISOCP problem (can
solve using Pajarito-in-Pajarito)

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 15 / 36



Algorithmic extensions

scaling of subproblem K∗ cuts to get convergence guarantees under
realistic assumptions about MILP solver tolerances

simple separation K∗ cuts for infeasible OA solutions

disaggregated extended formulation for L [VDHL16]

initial fixed K∗ cuts

for L, based on the `1 and `∞ bounds for `2
for P, an idea dual to the (scaled) diagonal dominance conditions for
PSD matrices described by [AH15]

extreme ray cuts, implemented for P based on eigendecompositions

L subproblem cuts for P, based on Schur complement [KKY03]

If using L cuts for P, the OA MIP model is an MISOCP problem (can
solve using Pajarito-in-Pajarito)

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 15 / 36



1 Mixed-integer convex optimization

2 Conic outer approximation

3 Pajarito mixed-integer conic solver

4 The future of Pajarito

5 An interactive look at the codebase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 16 / 36



Pajarito mixed-integer conic solver

open-source solver written in Julia and integrated with JuliaOpt

uses the powerful MathProgBase abstraction layer

accepts mixed-integer conic input from multiple modeling packages
calls MIP and continuous conic solvers in a solver-independent way

currently supports 3 nonpolyhedral cones: L, E ,P
around 30 algorithmic options (including the extensions described)

See Appendix 8 for a summary of preliminary testing on 120 nontrivial
MISOCP problems from CBLIB

using CPLEX’s MILP solver and MOSEK’s SOCP solver, beat
CPLEX’s specialized MISOCP solver

using open-source sub-solvers, very convincingly beat BONMIN

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 17 / 36



Pajarito mixed-integer conic solver

open-source solver written in Julia and integrated with JuliaOpt

uses the powerful MathProgBase abstraction layer

accepts mixed-integer conic input from multiple modeling packages
calls MIP and continuous conic solvers in a solver-independent way

currently supports 3 nonpolyhedral cones: L, E ,P
around 30 algorithmic options (including the extensions described)

See Appendix 8 for a summary of preliminary testing on 120 nontrivial
MISOCP problems from CBLIB

using CPLEX’s MILP solver and MOSEK’s SOCP solver, beat
CPLEX’s specialized MISOCP solver

using open-source sub-solvers, very convincingly beat BONMIN

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 17 / 36



Integration with MathProgBase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 18 / 36



Accessing Pajarito: MathProgBase conic form

traditional ‘convex MINLP’ solvers interact with the problem through
oracles to query values and derivatives of constraints and objective

this means complicated data structures and interfaces

Pajarito’s conic algorithm takes the conic form problem M: two
vectors c ,b, a (sparse) matrix A, and two lists of (predefined) cones

this compact representation makes the solver interface very
straightforward

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 19 / 36



Accessing Pajarito: MathProgBase conic form

Access Pajarito from algebraic modeling packages and conic formats

JuMP - supports L and P cones only

Convex.jl [UMZ+14] - a DCP implementation, does automatic conic
extended formulations

CVXPY [DB16] through the C API cmpb, thanks to Steven
Diamond, Baris Ungun

CBF proposed by Henrik Friberg [Fri16]

v2 support L, E ,P
encodes our benchmark and unit test problems
ConicBenchmarkUtilties.jl translates between conic format and CBF

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 20 / 36



Internal use of MathProgBase and JuMP

uses the conic interface to interact with continuous conic solvers

directly manipulates the conic data and uses setbvec!

uses JuMP to manage the MIP OA model and interact with MIP
solvers

MathProgBase does not attempt to provide an abstraction for solver
parameters like convergence tolerances

user’s responsibility to set tolerances on MIP and conic continuous
solvers

adjust the MILP solver’s linear feasibility tolerance and integer
feasibility tolerance for improved convergence behavior

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 21 / 36



Internal use of MathProgBase and JuMP

uses the conic interface to interact with continuous conic solvers

directly manipulates the conic data and uses setbvec!

uses JuMP to manage the MIP OA model and interact with MIP
solvers

MathProgBase does not attempt to provide an abstraction for solver
parameters like convergence tolerances

user’s responsibility to set tolerances on MIP and conic continuous
solvers

adjust the MILP solver’s linear feasibility tolerance and integer
feasibility tolerance for improved convergence behavior

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 21 / 36



Integration with MathProgBase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 22 / 36



Iterative OA algorithm

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 23 / 36



MIP-solver-driven OA algorithm

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 24 / 36



Issues with MIP callbacks in MSD algorithm

the MathProgBase MIP callback abstraction was designed primarily
around shared behavior between CPLEX and Gurobi

MILP solver may choose to ignore lazy cuts for numerical reasons and
accept its integer-feasible solution

CPLEX and SCIP allow explicit rejection of the solution with
incumbent callbacks, but these are not currently accessible

through lazy callbacks we do not have the ability to provide new
incumbents to the solver

we use the heuristic callback, but no guarantees on when it is called

For nominal correctness of MSD we must be able to update the incumbent
before the next node is processed

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 25 / 36



Issues with MIP callbacks in MSD algorithm

the MathProgBase MIP callback abstraction was designed primarily
around shared behavior between CPLEX and Gurobi

MILP solver may choose to ignore lazy cuts for numerical reasons and
accept its integer-feasible solution

CPLEX and SCIP allow explicit rejection of the solution with
incumbent callbacks, but these are not currently accessible

through lazy callbacks we do not have the ability to provide new
incumbents to the solver

we use the heuristic callback, but no guarantees on when it is called

For nominal correctness of MSD we must be able to update the incumbent
before the next node is processed

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 25 / 36



1 Mixed-integer convex optimization

2 Conic outer approximation

3 Pajarito mixed-integer conic solver

4 The future of Pajarito

5 An interactive look at the codebase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 26 / 36



The future of Pajarito

MathProgBase status changes will fix some internal issues and
necessitate rethinking Pajarito return statuses

Convex.jl does not yet support Julia 0.6

MathProgBase set-inclusion models may allow a much-improved
future version of Pajarito

atom-based modeling package extension for JuMP (‘AtomicJuMP’)?
automated extended formulations of set-inclusion models?
a continuous set-inclusion model solver? (primal-dual? certificates?)

examples folder - please submit PRs with applications, after changes

some basic documentation with Documenter.jl

eventually MathProgBase callbacks should be rethought

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 27 / 36



1 Mixed-integer convex optimization

2 Conic outer approximation

3 Pajarito mixed-integer conic solver

4 The future of Pajarito

5 An interactive look at the codebase

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 28 / 36



Solver and model objects

Look at cardinality constrained least squares example (cardls.jl), which has
both NLP and conic models

using Pajarito

s = PajaritoSolver() - instantiate Pajarito solver s

m = Model(s) - instantiate Pajarito model m, either:

PajaritoConicModel<:AbstractConicModel

PajaritoNonlinearModel<:AbstractNonlinearModel

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 29 / 36

https://github.com/JuliaOpt/Pajarito.jl/blob/master/examples/cardls.jl
https://github.com/JuliaOpt/Pajarito.jl/tree/master/src
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/solver.jl#L20
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/solver.jl#L117
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/conic_algorithm.jl#L42
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/nonlinear_algorithm.jl#L9


Solver and model objects

Look at cardinality constrained least squares example (cardls.jl), which has
both NLP and conic models

using Pajarito

s = PajaritoSolver() - instantiate Pajarito solver s

m = Model(s) - instantiate Pajarito model m, either:

PajaritoConicModel<:AbstractConicModel

PajaritoNonlinearModel<:AbstractNonlinearModel

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 29 / 36

https://github.com/JuliaOpt/Pajarito.jl/blob/master/examples/cardls.jl
https://github.com/JuliaOpt/Pajarito.jl/tree/master/src
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/solver.jl#L20
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/solver.jl#L117
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/conic_algorithm.jl#L42
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/nonlinear_algorithm.jl#L9


Loading and solving a conic model

Use the following basic MathProgBase functions

loadproblem!(m, c, A, b, cone con, cone var)

setvartype!(m, var types)

optimize!(m)

miscellaneous getters

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 30 / 36

https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/conic_algorithm.jl#L215
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/conic_algorithm.jl#L413
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/conic_algorithm.jl#L215
https://github.com/JuliaOpt/Pajarito.jl/blob/master/src/conic_algorithm.jl#L669


Pajarito’s unit tests

See the test folder

define MILP/MISOCP and conic and NLP solvers

use @testset to define nested sets of tests, iterating over
combinations of solvers and options

the conic tests use CBF instances in the CBF folder

the CBF instances are created from JuMP models by calling a
function from ConicBenchmarkUtilities.jl

Tests are fragile

we rely on numerical solvers

tolerances matter, but it’s not always clear how

we have identified incorrect solutions/statuses from all MIP solvers

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 31 / 36

https://github.com/JuliaOpt/Pajarito.jl/tree/master/test
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/runtests.jl#L18
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/runtests.jl#L96
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/runtests.jl#L96
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/conictest.jl
https://github.com/JuliaOpt/Pajarito.jl/tree/master/test/cbf
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/cbf/jump_models.jl
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/cbf/jump_models.jl
https://github.com/mlubin/ConicBenchmarkUtilities.jl


Pajarito’s unit tests

See the test folder

define MILP/MISOCP and conic and NLP solvers

use @testset to define nested sets of tests, iterating over
combinations of solvers and options

the conic tests use CBF instances in the CBF folder

the CBF instances are created from JuMP models by calling a
function from ConicBenchmarkUtilities.jl

Tests are fragile

we rely on numerical solvers

tolerances matter, but it’s not always clear how

we have identified incorrect solutions/statuses from all MIP solvers

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 31 / 36

https://github.com/JuliaOpt/Pajarito.jl/tree/master/test
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/runtests.jl#L18
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/runtests.jl#L96
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/runtests.jl#L96
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/conictest.jl
https://github.com/JuliaOpt/Pajarito.jl/tree/master/test/cbf
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/cbf/jump_models.jl
https://github.com/JuliaOpt/Pajarito.jl/blob/master/test/cbf/jump_models.jl
https://github.com/mlubin/ConicBenchmarkUtilities.jl


Thank you

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 32 / 36



References I

Amir Ali Ahmadi and Georgina Hall, Sum of squares basis pursuit with linear
and second order cone programming, arXiv preprint arXiv:1510.01597 (2015).

Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn, Gérard Cornuéjols,
Ignacio E. Grossmann, Carl D. Laird, Jon Lee, Andrea Lodi, François Margot,
Nicolas Sawaya, and Andreas Wächter, An algorithmic framework for convex
mixed integer nonlinear programs, Discrete Optimization 5 (2008), no. 2,
186–204.

Pierre Bonami, Mustafa Kilinç, and Jeff Linderoth, Algorithms and software
for convex mixed integer nonlinear programs, Mixed Integer Nonlinear
Programming (Jon Lee and Sven Leyffer, eds.), The IMA Volumes in
Mathematics and its Applications, vol. 154, Springer New York, 2012,
pp. 1–39 (English).

Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi, A
tutorial on geometric programming, Optimization and engineering 8 (2007),
no. 1, 67.

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 33 / 36



References II

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski, Robust
optimization, Princeton University Press, 2009.

A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization,
Society for Industrial and Applied Mathematics, 2001.

Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge
University Press, 2004.

Chris Coey, Miles Lubin, and Juan Pablo Vielma, A conic framework for
solving mixed-integer convex problems via outer approximation, in
preparation, 2017.

Steven Diamond and Stephen Boyd, Cvxpy: A python-embedded modeling
language for convex optimization, Journal of Machine Learning Research 17
(2016), no. 83, 1–5.

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 34 / 36



References III

Robin Deits and Russ Tedrake, Efficient mixed-integer planning for uavs in
cluttered environments, Robotics and Automation (ICRA), 2015 IEEE
International Conference on, IEEE, 2015, pp. 42–49.

Henrik A. Friberg, CBLIB 2014: a benchmark library for conic mixed-integer
and continuous optimization, Mathematical Programming Computation 8
(2016), no. 2, 191–214.

Sunyoung Kim, Masakazu Kojima, and Makoto Yamashita, Second order
cone programming relaxation of a positive semidefinite constraint,
Optimization Methods and Software 18 (2003), no. 5, 535–541.

M. Lubin, E. Yamangil, R. Bent, and Juan Pablo Vielma, Polyhedral
approximation in mixed-integer convex optimization, ArXiv e-prints (2016).

M. Lubin, I. Zadik, and J. P. Vielma, Mixed-integer convex representability,
ArXiv e-prints (2016).

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 35 / 36



References IV

I. Quesada and I.E. Grossmann, An lp/nlp based branch and bound algorithm
for convex minlp optimization problems, Computers & Chemical Engineering
16 (1992), no. 10, 937–947.

Mohit Tawarmalani and Nikolaos V. Sahinidis, A polyhedral branch-and-cut
approach to global optimization, Mathematical Programming 103 (2005),
no. 2, 225–249 (English).

Madeleine Udell, Karanveer Mohan, David Zeng, Jenny Hong, Steven
Diamond, and Stephen Boyd, Convex optimization in julia, Proceedings of
HPTCDL 14 (Piscataway, NJ, USA), IEEE Press, 2014, pp. 18–28.

Juan Pablo Vielma, Iain Dunning, Joey Huchette, and Miles Lubin, Extended
formulations in mixed integer conic quadratic programming, Mathematical
Programming Computation (2016), 1–50.

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 36 / 36



6 Example: experimental design

7 Branch and bound algorithm

8 Computational testing

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 1 / 17



Experimental design optimization

From [BV04]

estimate a vector x ∈ RQ

budget of M experiments selected from a menu u1, . . . ,uP ∈ RQ

let mp be the number times experiment up is run

assume a linear model u ′x with Gaussian noise

to maximize informativeness, ‘minimize’ the error covariance matrix
(a function of the experiment choices m), denoted E (m)

E (m) ≡
(∑

p∈[P]mpupu ′p
)−1

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 2 / 17



Experimental design optimization

From [BV04]

estimate a vector x ∈ RQ

budget of M experiments selected from a menu u1, . . . ,uP ∈ RQ

let mp be the number times experiment up is run

assume a linear model u ′x with Gaussian noise

to maximize informativeness, ‘minimize’ the error covariance matrix
(a function of the experiment choices m), denoted E (m)

E (m) ≡
(∑

p∈[P]mpupu ′p
)−1

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 2 / 17



Mixed-integer convex formulation

If f : SQ+ → R measures the ‘size’ of the error covariance matrix E (m)

min
m∈RP

f (E (m)) : minimize error covariance

1′m ≤ M budget of experiments

m ∈ ZP
+ integrality restriction

If E is a confidence ellipsoid for x given E , there are many choices for f (E )

E-opt minimizes the diameter of E : min ‖E‖2
A-opt minimizes mean squared error: min tr E
D-opt minimizes the volume of E : min log det E , or by [BTN01],

maximizes scaled geomean eigenvalues of
∑

p∈[P]mpupu ′p

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 3 / 17



Mixed-integer convex formulation

If f : SQ+ → R measures the ‘size’ of the error covariance matrix E (m)

min
m∈RP

f (E (m)) : minimize error covariance

1′m ≤ M budget of experiments

m ∈ ZP
+ integrality restriction

If E is a confidence ellipsoid for x given E , there are many choices for f (E )

E-opt minimizes the diameter of E : min ‖E‖2
A-opt minimizes mean squared error: min tr E
D-opt minimizes the volume of E : min log det E , or by [BTN01],

maximizes scaled geomean eigenvalues of
∑

p∈[P]mpupu ′p

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 3 / 17



6 Example: experimental design

7 Branch and bound algorithm

8 Computational testing

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 4 / 17



A branch and bound OA algorithm

a conic analogue of [QG92] (convex MINLP)

assume we have explicit bounds l 0,u0 on the integer variables (xi )i∈[I ]

recursively partition the possible assignments of integer variables by
lower and upper bound vectors l ,u
add subproblem K∗ cuts when we get integer solutions for x1, . . . , xI -
globally valid and, if added to the LP relaxation, contain enough
information to properly process the node

solve linear programming relaxations with reliable (dual) simplex

requires few pivots after adding cuts
achieve very tight feasibility and optimality tolerances

finite convergence if there is a finite number of integer assignments

finite number of nodes, each examined a finite number of times
if we add subproblem cuts at every node, assuming strong duality
then the optimal objective value of the final polyhedral OA model will
equal that of the MICP problem

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 5 / 17



Processing nodes

Suppose we are at a node (l ,u, L) of the branch and bound tree

l ,u are the node’s lower, upper variable bounds for x̂ = (x1, . . . , xI )

L is a lower objective bound for M restricted to xi ∈ [li , ui ],∀i ∈ [I ]

so if L > U then we can discard the node

otherwise we try to tighten L by solving a polyhedral OA relaxation

Given current K∗ cut sets (Zk)k∈[K ], we solve the LP P
(
(Zk)k∈[K ], l ,u

)
min
x

〈c , x〉 : (P
(
(Zk)k∈[K ], l ,u

)
)

〈bk − Akx , zk〉 ∈ R+ ∀zk ∈ Zk , k ∈ [K ]

bk − Akx ∈ Ck ∀k ∈ [M]\[K ]

xi ∈ [li , ui ] ∀i ∈ [I ]

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 6 / 17



Processing nodes

Suppose we are at a node (l ,u, L) of the branch and bound tree

l ,u are the node’s lower, upper variable bounds for x̂ = (x1, . . . , xI )

L is a lower objective bound for M restricted to xi ∈ [li , ui ],∀i ∈ [I ]

so if L > U then we can discard the node

otherwise we try to tighten L by solving a polyhedral OA relaxation

Given current K∗ cut sets (Zk)k∈[K ], we solve the LP P
(
(Zk)k∈[K ], l ,u

)
min
x

〈c , x〉 : (P
(
(Zk)k∈[K ], l ,u

)
)

〈bk − Akx , zk〉 ∈ R+ ∀zk ∈ Zk , k ∈ [K ]

bk − Akx ∈ Ck ∀k ∈ [M]\[K ]

xi ∈ [li , ui ] ∀i ∈ [I ]

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 6 / 17



Branch and bound algorithm

1: initialize global upper bound U to ∞
2: solve R for optimal value CR and dual solution (z̄k)k∈[M]

3: initialize K∗ cut sets (Zk)k∈[K ] with relaxation cuts (z̄k)k∈[K ]

4: initialize node list N with most relaxed node (l 0,u0,CR)
5: while N contains nodes do
6: remove a node (l ,u, L) from N
7: if node’s lower bound L ≤ U then
8: solve LP P

(
(Zk)k∈[K ], l ,u

)
and update U, (Zk)k∈[K ], N

9: end if
10: end while

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 7 / 17



LP procedure at a node

1: if P
(
(Zk)k∈[K ], l ,u

)
is feasible & optimal value CP < U then

2: let x̄? be the integer variable subvector of an optimal solution
3: if integrality x̄? ∈ ZI is satisfied then
4: solve R(x̄?, x̄?) for an optimal dual solution or ray (z̄k)k∈[M]

5: add K∗ cuts (z̄k)k∈[K ] to (Zk)k∈[K ]

6: if R(x̄?, x̄?) is feasible & optimal value CR(x̄?, x̄?) < U then
7: update U to new best feasible value CR(x̄?, x̄?)
8: end if
9: add node (l ,u,CP) to N for reprocessing

10: else
11: choose a fractional variable i : x?i 6∈ Z to branch on
12: add left branch node (l , (u1, . . . , bx?i c, . . . , uI ) ,CP) to N
13: add right branch node ((l1, . . . , dx?i e, . . . , lI ) ,u,CP) to N
14: end if
15: end if

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 8 / 17



A continuous subproblem

Consider restricting the (relaxed) integer variables of R to a box (l ,u)

min
x

〈c , x〉 : (R(l ,u))

bk − Akx ∈ Ck ∀k ∈ [M]

xi ∈ [li , ui ] ∀i ∈ [I ]

x ∈ RN

After encoding the box constraints conically, the conic dual is

max
z1,...,zK ,α,β

∑
i∈[I ]

(liαi − uiβi )−
∑
k∈[M]

〈bk , zk〉 : (R∗(l ,u))

c +
∑
i∈[I ]

(βi − αi )e(i) +
∑
k∈[M]

AT
k zk ∈ {0}N

zk ∈ C∗k ∀k ∈ [M]

α,β ∈ RI
+

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 9 / 17



A continuous subproblem

Consider restricting the (relaxed) integer variables of R to a box (l ,u)

min
x

〈c , x〉 : (R(l ,u))

bk − Akx ∈ Ck ∀k ∈ [M]

xi ∈ [li , ui ] ∀i ∈ [I ]

x ∈ RN

After encoding the box constraints conically, the conic dual is

max
z1,...,zK ,α,β

∑
i∈[I ]

(liαi − uiβi )−
∑
k∈[M]

〈bk , zk〉 : (R∗(l ,u))

c +
∑
i∈[I ]

(βi − αi )e(i) +
∑
k∈[M]

AT
k zk ∈ {0}N

zk ∈ C∗k ∀k ∈ [M]

α,β ∈ RI
+

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 9 / 17



Subproblem K∗ cuts: feasible primal case

Assume R(l ,u) is feasible and bounded, and strong duality holds, thus we
have an optimal primal-dual solution (x?, z?

1 , . . . , z
?
K ,α

?,β?)

From the dual solution subvector (z̄k)k∈[M], we derive K∗ cuts

〈bk − Akx , z̄k〉 ≥ 0 ∀k ∈ [K ]

bk − Akx ∈ Ck ∀k ∈ [M]\[K ]

xi ∈ [li , ui ] ∀i ∈ [I ]

Any x satisfying these linear constraints satisfies an objective bound

〈c , x〉 ≥ 〈c , x?〉

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 10 / 17



Subproblem K∗ cuts: feasible primal case

Assume R(l ,u) is feasible and bounded, and strong duality holds, thus we
have an optimal primal-dual solution (x?, z?

1 , . . . , z
?
K ,α

?,β?)

From the dual solution subvector (z̄k)k∈[M], we derive K∗ cuts

〈bk − Akx , z̄k〉 ≥ 0 ∀k ∈ [K ]

bk − Akx ∈ Ck ∀k ∈ [M]\[K ]

xi ∈ [li , ui ] ∀i ∈ [I ]

Any x satisfying these linear constraints satisfies an objective bound

〈c , x〉 ≥ 〈c , x?〉

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 10 / 17



Subproblem K∗ cuts: feasible primal case

Assume R(l ,u) is feasible and bounded, and strong duality holds, thus we
have an optimal primal-dual solution (x?, z?

1 , . . . , z
?
K ,α

?,β?)

From the dual solution subvector (z̄k)k∈[M], we derive K∗ cuts

〈bk − Akx , z̄k〉 ≥ 0 ∀k ∈ [K ]

bk − Akx ∈ Ck ∀k ∈ [M]\[K ]

xi ∈ [li , ui ] ∀i ∈ [I ]

Any x satisfying these linear constraints satisfies an objective bound

〈c , x〉 ≥ 〈c , x?〉

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 10 / 17



Subproblem K∗ cuts: infeasible primal case

Assume now R(l ,u) is infeasible, so we have a certificate of infeasibility
i.e. a ray

(
(zk)k∈[M],α,β

)
of R∗(l ,u) satisfying∑

i∈[I ]

(βi − αi )e(i) +
∑
k∈[K ]

AT
k zk ∈ {0}N∑

i∈[I ]

(uiβi − liαi ) +
∑
k∈[M]

〈bk , zk〉 < 0

From the ray subvector (z̄k)k∈[M], we derive K∗ cuts that exclude all
solutions for the bounds (l ,u)

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 11 / 17



Subproblem K∗ cuts: infeasible primal case

Assume now R(l ,u) is infeasible, so we have a certificate of infeasibility
i.e. a ray

(
(zk)k∈[M],α,β

)
of R∗(l ,u) satisfying∑

i∈[I ]

(βi − αi )e(i) +
∑
k∈[K ]

AT
k zk ∈ {0}N∑

i∈[I ]

(uiβi − liαi ) +
∑
k∈[M]

〈bk , zk〉 < 0

From the ray subvector (z̄k)k∈[M], we derive K∗ cuts that exclude all
solutions for the bounds (l ,u)

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 11 / 17



Subproblem K∗ cuts: infeasible primal case

For all x satisfying

bk − Akx ∈ Ck ∀k ∈ [M]\[K ]

xi ∈ [li , ui ] ∀i ∈ [I ]

there exists a k ∈ [K ] such that 〈bk − Akx , zk〉 < 0

∑
k∈[K ]

〈bk − Akx , zk〉

≤
∑
k∈[M]

〈bk − Akx , zk〉+
∑
i∈[I ]

(−li + xi )αi +
∑
i∈[I ]

(ui − xi )βi

=

〈
x ,
∑
i∈[I ]

(αi − βi )e(i)−
∑
k∈[M]

AT
k zk

〉
+
∑
k∈[M]

〈bk , zk〉+
∑
i∈[I ]

(uiβi − liαi )

=
∑
k∈[M]

〈bk , zk〉+
∑
i∈[I ]

(uiβi − liαi ) < 0

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 12 / 17



Subproblem K∗ cuts: infeasible primal case

For all x satisfying

bk − Akx ∈ Ck ∀k ∈ [M]\[K ]

xi ∈ [li , ui ] ∀i ∈ [I ]

there exists a k ∈ [K ] such that 〈bk − Akx , zk〉 < 0∑
k∈[K ]

〈bk − Akx , zk〉

≤
∑
k∈[M]

〈bk − Akx , zk〉+
∑
i∈[I ]

(−li + xi )αi +
∑
i∈[I ]

(ui − xi )βi

=

〈
x ,
∑
i∈[I ]

(αi − βi )e(i)−
∑
k∈[M]

AT
k zk

〉
+
∑
k∈[M]

〈bk , zk〉+
∑
i∈[I ]

(uiβi − liαi )

=
∑
k∈[M]

〈bk , zk〉+
∑
i∈[I ]

(uiβi − liαi ) < 0

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 12 / 17



6 Example: experimental design

7 Branch and bound algorithm

8 Computational testing

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 13 / 17



Comparing subproblem and separation cuts

Termination statuses and shifted geomean of solve time and iteration
count (for iterative algorithm only) on 120 MISOCPs, using Pajarito with
CPLEX and MOSEK

options termination status counts conv only stats

alg cuts conv wrong not conv limit time(s) iterations

iter sep 96 1 0 23 55.23 6.76
iter subp 95 1 3 21 39.59 4.07

MSD sep 95 1 0 24 20.86 –
MSD subp 100 0 1 19 17.56 –

Subproblem cuts should be used always, and separation cuts should be
invoked when necessary for convergence

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 14 / 17



Comparing subproblem and separation cuts

Termination statuses and shifted geomean of solve time and iteration
count (for iterative algorithm only) on 120 MISOCPs, using Pajarito with
CPLEX and MOSEK

options termination status counts conv only stats

alg cuts conv wrong not conv limit time(s) iterations

iter sep 96 1 0 23 55.23 6.76
iter subp 95 1 3 21 39.59 4.07

MSD sep 95 1 0 24 20.86 –
MSD subp 100 0 1 19 17.56 –

Subproblem cuts should be used always, and separation cuts should be
invoked when necessary for convergence

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 14 / 17



Comparisons with specialized MISOCP solvers

Termination statuses and shifted geometric mean of solve time on 120
MISOCPs, for SCIP and CPLEX MISOCP solvers, and default MSD and
iterative Pajarito solvers using CPLEX and MOSEK

termination status counts

solver conv wrong not conv limit time(s)

SCIP 78 1 0 41 43.36
CPLEX 96 3 5 16 14.30
Paj-iter 96 1 0 23 38.70
Paj-MSD 101 0 0 19 18.12

Pajarito’s MSD algorithm solves more instances in the time limit and has
no incorrect solutions

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 15 / 17



Comparisons with specialized MISOCP solvers

Termination statuses and shifted geometric mean of solve time on 120
MISOCPs, for SCIP and CPLEX MISOCP solvers, and default MSD and
iterative Pajarito solvers using CPLEX and MOSEK

termination status counts

solver conv wrong not conv limit time(s)

SCIP 78 1 0 41 43.36
CPLEX 96 3 5 16 14.30
Paj-iter 96 1 0 23 38.70
Paj-MSD 101 0 0 19 18.12

Pajarito’s MSD algorithm solves more instances in the time limit and has
no incorrect solutions

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 15 / 17



Open-source solver comparisons for MISOCP

Termination statuses and shifted geomean of solve time on 120 MISOCPs
for BONMIN [BBC+08] with Cbc and IPOPT, and Pajarito using Cbc
or GLPK and ECOS (iterative algorithm with default options)

termination status counts

solver conv wrong not conv limit time(s)

BONMIN-BB 37 27 10 46 82.95
BONMIN-OA 30 8 29 53 72.12
BONMIN-OA-D 35 8 29 48 64.25
Paj-CBC-ECOS 81 8 0 31 51.48
Paj-GLPK-ECOS 68 0 2 50 42.75

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 16 / 17



Testing with portfolio optimization

Using covariance estimates from real data, we generate cardinality
constrained multi-portfolio problems with convex risk constraints

L `2 norm - standard in Markowitz model

P robust `2 norm [BTEGN09]

E entropic ball [BTEGN09]

On instances with 20 portfolios and up to 100 stocks per portfolio, running
Pajarito’s MSD algorithm using default options and CPLEX

with `2 norm, using MOSEK, several minutes

with `2 norm and entropic ball, using ECOS, 5-10 minutes

with `2 norm and robust norm, using MOSEK, 20-30 minutes

with all three risk constraints, using SCS, hours

Problems with P scale poorly - no disaggregated extended formulation

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 17 / 17



Testing with portfolio optimization

Using covariance estimates from real data, we generate cardinality
constrained multi-portfolio problems with convex risk constraints

L `2 norm - standard in Markowitz model

P robust `2 norm [BTEGN09]

E entropic ball [BTEGN09]

On instances with 20 portfolios and up to 100 stocks per portfolio, running
Pajarito’s MSD algorithm using default options and CPLEX

with `2 norm, using MOSEK, several minutes

with `2 norm and entropic ball, using ECOS, 5-10 minutes

with `2 norm and robust norm, using MOSEK, 20-30 minutes

with all three risk constraints, using SCS, hours

Problems with P scale poorly - no disaggregated extended formulation

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 17 / 17



Testing with portfolio optimization

Using covariance estimates from real data, we generate cardinality
constrained multi-portfolio problems with convex risk constraints

L `2 norm - standard in Markowitz model

P robust `2 norm [BTEGN09]

E entropic ball [BTEGN09]

On instances with 20 portfolios and up to 100 stocks per portfolio, running
Pajarito’s MSD algorithm using default options and CPLEX

with `2 norm, using MOSEK, several minutes

with `2 norm and entropic ball, using ECOS, 5-10 minutes

with `2 norm and robust norm, using MOSEK, 20-30 minutes

with all three risk constraints, using SCS, hours

Problems with P scale poorly - no disaggregated extended formulation

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 17 / 17



Testing with portfolio optimization

Using covariance estimates from real data, we generate cardinality
constrained multi-portfolio problems with convex risk constraints

L `2 norm - standard in Markowitz model

P robust `2 norm [BTEGN09]

E entropic ball [BTEGN09]

On instances with 20 portfolios and up to 100 stocks per portfolio, running
Pajarito’s MSD algorithm using default options and CPLEX

with `2 norm, using MOSEK, several minutes

with `2 norm and entropic ball, using ECOS, 5-10 minutes

with `2 norm and robust norm, using MOSEK, 20-30 minutes

with all three risk constraints, using SCS, hours

Problems with P scale poorly - no disaggregated extended formulation

Chris Coey (MIT ORC) Pajarito Solver JuMP Meetup, 2017 17 / 17


	Mixed-integer convex optimization
	Conic outer approximation
	Pajarito mixed-integer conic solver
	The future of Pajarito
	An interactive look at the codebase
	Appendix
	Example: experimental design
	Branch and bound algorithm
	Computational testing


