

advanced network science initiative (ansi)

PowerModels.jl a Brief Introduction

Carleton Coffrin, et. al.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos NATIONAL LABORATORY

EST.1943

A Bit About Me

- Trained as Computer Scientist
 - BS University of Connecticut
 - PhD Brown University
- Know about CS Stuff
 - Software Engineering
 - Programming Language Design
 - **Computational Research Focus**

UNCLASSIFIED

Pascal Van Hentenryck

Laurent Michel

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

A Bit About Me

- Discrete Optimization Research
- Generalist
 - Local Search / Heuristics
 - Constraint Programming
 - MIP
 - NLP & MINLP (more recently)

COURSERC

Discrete Optimization

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

A Bit About LANL

- Advanced Network Science Initiative (ANSI)
- 10+ Diverse Staff
 - Optimization, ML, Applied Math, **Statistical Physics**
- Applications in complex networks
 - e.g. Electric Power, Natural Gas, Water
- Developing novel algorithmic methods

$\mathbf{D}\mathbf{D}\mathbf{S}$

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

A Bit About LANL ANSI LOVES JuliaOpt

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

Outline

- Motivation
 - Optimization
- A Brief Introduction to PowerModels.jl
- Plans for the Near-Future

UNCLASSIFIED

Challenges of R&D in Power Network

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Motivation

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Power Network Optimization is Complicated AC Power Flow $\theta_r = 0$ $p_i^g - p_i^d = \sum_{(i,j)\in E\cup E^R} p_{ij} \quad \forall i \in N$ Flow Conservation (i.e. KCL) AC $q_i^g - \boldsymbol{q}_i^d = \sum q_{ij} \quad \forall i \in N$ non-convex $(i,j) \in E \cup E^R$ $p_{ij} = \boldsymbol{g}_{ij} v_i^2 - \boldsymbol{g}_{ij} v_i v_j \cos(\theta_{ij}^{\Delta}) - \boldsymbol{b}_{ij} v_i v_j \sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$ Line Power Flow $q_{ij} = -\boldsymbol{b}_{ij}v_i^2 + \boldsymbol{b}_{ij}v_iv_j\cos(\theta_{ij}^{\Delta}) - \boldsymbol{g}_{ij}v_iv_j\sin(\theta_{ij}^{\Delta}) \quad (i,j) \in E \cup E^R$ (i.e. Ohm's Law) $\theta_{ij}^{\Delta} = \theta_i - \theta_j \quad \forall (i,j) \in E \longleftarrow$ $p_{ij}^2 + q_{ij}^2 \le (s_{ij}^u)^2 \quad \forall (i,j) \in E \cup E^R$ Line Flow Limits

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Power Network Optimization is Complicated

IEEE TRANSACTIONS ON POWER SYSTEMS

AC-Feasibility on Tree Networks is NP-Hard

Karsten Lehmann, Alban Grastien, and Pascal Van Hentenryck

Abstract—Recent years have witnessed significant interest in convex relaxations of the power flows, with several papers showing that the second-order cone relaxation is tight for tree networks under various conditions on loads or voltages. This paper shows that ac-feasibility, i.e., to find whether some generator dispatch can satisfy a given demand, is NP-hard for tree networks.

Index Terms—Computational complexity, optimal power flow (OPF).

NOMENCLATURE

- \mathcal{N} AC-network.
- N Set of buses.
- N_G Set of generators.
- N_L Set of loads.
- *i* Bus of a network.
- *i* Bus of a network.

I. INTRODUCTION

ANY interesting applications in power systems, including optimal power flows, optimize an objective function over the steady-state power flow equations, which are nonlinear and nonconvex. These applications typically include an *ac-feasibility* (AC-FEAS) subproblem: find whether some generator dispatch can satisfy a given demand.

Although the set of ac-feasible solutions is in general a nonconvex set, this does not imply that the ac-feasibility problem is NP-hard,¹ as nonconvexity does not imply NP-hardness. For example, the family of optimization problems min y such that $0 \le y \le \prod_{i=1}^{n} x_i$ where $n \in \mathbb{N}$ has a nonconvex constraint and a nonconvex solution set but the optimal solution is always y = 0 and can be trivially computed.

The first NP-hardness proof for ac-feasibility was given for a cyclic network structure in [1]. It relies on a variant of the dc model [2] but uses a sine function around the phase angle dif

Power Network Optimization is Complicated DC Power Flow Approximation

 $\theta_r = 0$ $p_i^g - p_i^d = \sum p_{ij} \quad \forall i \in N$ $(i,j) \in E \cup E^R$ $p_{ij} = -\boldsymbol{b}_{ij}(\theta_{ij}^{\Delta}) \ (i,j) \in E \cup E^R \longleftarrow \text{Linear Model}$ $\theta_{ij}^{\Delta} = \theta_i - \theta_j \quad \forall (i,j) \in E$ $|p_{ij}| \leq s_{ij}^{\boldsymbol{u}} \quad \forall (i,j) \in E \cup E^R$

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-17-24522

10

 $p_i^g - \boldsymbol{p}_i^d = \sum p_{ij} \quad \forall i \in N$ $(i,j) \in E \cup E^R$ $q_i^g - \boldsymbol{q}_i^d = \sum q_{ij} \quad \forall i \in N$ $(i,j) \in E \cup E^R$ $p_{ij} = \boldsymbol{g}_{ij} w_i - \boldsymbol{g}_{ij} w_{ij}^R - \boldsymbol{b}_{ij} w_{ij}^I \quad (i,j) \in E \cup E^R$ $q_{ij} = -\boldsymbol{b}_{ij}w_i + \boldsymbol{b}_{ij}w_{ij}^R - \boldsymbol{g}_{ij}w_{ij}^I \quad (i,j) \in E \cup E^R$ $p_{ij}^2 + q_{ij}^2 \le (s_{ij}^u)^2 \ \forall (i,j) \in E \cup E^R$ $(w_{ij}^R)^2 + (w_{ij}^I)^2 \le w_i w_j \ (i,j) \in E \blacktriangleleft$ $\boldsymbol{\theta}_{ij}^{\boldsymbol{\Delta l}} w_{ij}^{R} \leq w_{ij}^{I} \leq w_{ij}^{R} \boldsymbol{\theta}_{ij}^{\boldsymbol{\Delta u}} \quad (i,j) \in E$

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

R&D Challenges

- Two Core Issues
 - Power Flow Formulations
 - Test Cases for Benchmarking

ulations enchmarking

12

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Formulation Problem

- previous works
- No clear top performers, in terms of citations at least...

 It is possible to publish a new approximation or relaxation, without comparing to many

There has been an explosion of proposed power flow alternatives (often hard to find)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Steady State AC Flow

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-17-24522

DC-NF	

AC-NF

EST. 1943

14

The Instance Problem

- It is possible to publish a new method, by only testing on a few (5-10)
- typically these are very-easy test cases
 - e.g. convex objective function with **no binding** constraints
- Industry more-or-less ignores academic results One reason is that the test cases are too easy

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

My Solution? A novel scientific methodology

Brute-Force R&D **Run All Formulations on All Instances** "No clever ideas required!"

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

AMPL Implementation

- AC_b_only.mod
- AC_basic.mod
- AC_cb.mod
- AC_cb2.mod
- AC_cp.mod
- AC_current_inject.mod
- AC_current.mod
- AC_distflow_cvx.mod
- AC_first_order.mod
- AC_global_rect.mod
- AC_global_w_rect.mod
- AC_global_w.mod
- AC_global.mod
- AC_line_flex.mod
- AC_line_fp.mod
- AC_line_fp2.mod
- AC_II_theta.mod

- AC_loss.mod
- AC_nf_lb_lin.mod
- AC_nf_lin.mod
- AC_nf_II_cvx.mod
- AC_nf_ll.mod
- AC_pf_opf.mod
- AC_pf_soft.mod
- AC_pf.mod
- AC_polar.mod
- AC_poly_cvx.mod
- AC_poly_ll_cvx.mod
- AC_rect_cvx.mod
- AC_rect_gamma_lin.mod
- AC_rect_gamma.mod
- AC_rect_ll_cvx.mod
- AC_rect_nf_cvx.mod
- AC_rect_polar.mod
- AC_rect.mod

- DC_cp.mod
- DC_distflow_cvx.mod
- DC_II_cvx.mod
- DC_II.mod
- DC_nf_ll_cvx.mod
- DC_nf.mod
- DC.mod

UNCLASSIFIED

QC_bus_flex.mod QC_cs_cvx.mod QC_cut_cvx_fp.mod QC_cut_flex_nlp.mod QC_cvx_fp_qp.mod QC_cvx_fp.mod QC_cvx_init.mod QC_cvx_sym.mod QC_cvx.mod QC_dir_cvx.mod QC_flex_cvx_pre.mod QC_flex_cvx.mod QC_flex_nlp_pre.mod QC_flex_nlp.mod QC_line_flex_nlp.mod QC_line_flex.mod QC_line_fp2_nlp.mod QC_line_fp2.mod QC_ncvx.mod QC_nlp_old.mod QC_nlp.mod QC_tan_cvx.mod QC_w_cvx.mod QPAC.mod

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-17-24522

17

Test Case Archive

NESTA

The NICTA Energy System Test Case Archive

Carleton Coffrin^{1,2,3}, Dan Gordon¹, and Paul Scott^{1,2}

¹Optimisation Research Group, NICTA ²College of Engineering and Computer Science, Australian National University ³Computing and Information Systems, University of Melbourne

August 12, 2016

Abstract

In recent years the power systems research community has seen an explosion of work applying operations research techniques to challenging power network optimization problems. Regardless of the application under consideration, all of these works rely on power system test cases for evaluation and validation. However, many of the well established power system test cases were developed as far back as the 1960s with the aim of testing AC power flow algorithms. It is unclear if these power flow test cases are suitable for power system optimization studies. This report surveys all of the publicly available AC transmission system test cases, to the best of our knowledge, and assess their suitability for optimization tasks. It finds that many of the traditional test cases are missing key network operation constraints, such as line thermal limits and generator capability curves. To incorporate these missing constraints, data driven models are developed from a variety of publicly available data sources. The resulting extended test cases form a compressive archive, NESTA, for the evaluation and validation of power system optimization algorithms.

https://arxiv.org/abs/1411.0359

UNCLASSIFIED

SAD

nesta_case3_lmbdsad
nesta_case4_gssad
nesta_case5_pjmsad
nesta_case6_csad
nesta_case6_wwsad
nesta_case9_wsccsad
nesta_case14_ieeesad
nesta_case24_ieee_rtssad
nesta_case29_edinsad
nesta_case30_assad
nesta_case30_fsrsad
nesta_case30_ieeesad
nesta_case39_eprisad
nesta_case57_ieeesad
nesta_case73_ieee_rtssad
nesta_case89_pegasesad
nesta_case118_ieeesad
nesta_case162_ieee_dtcsad
nesta_case189_edinsad
nesta_case300_ieeesad
nesta_case1354_pegasesad
nesta_case1394sop_eirsad
nesta_case1397sp_eirsad
nesta_case1460wp_eirsad
nesta_case2224_edinsad
nesta_case2383wp_mpsad
nesta_case2736sp_mpsad
nesta_case2737sop_mpsad
nesta_case2746wp_mpsad
nesta_case2746wop_mpsad
nesta_case2869_pegasesad
nesta_case3012wp_mpsad
nesta_case3120sp_mpsad
nesta_case3375wp_mpsad
nesta_case9241_pegasesad

API

nesta_case3_lmbdapi
nesta_case4_gsapi
nesta_case5_pjmapi
nesta_case6_capi
nesta_case6_wwapi
nesta_case9_wsccapi
nesta_case14_ieeeapi
nesta_case24_ieee_rtsapi
nesta_case29_edinapi
nesta_case30_asapi
nesta_case30_fsrapi
nesta_case30_ieeeapi
nesta_case39_epriapi
nesta_case57_ieeeapi
nesta_case73_ieee_rtsapi
nesta_case89_pegaseapi
nesta_case118_ieeeapi
nesta_case162_ieee_dtcapi
nesta_case189_edinapi
nesta_case300_ieeeapi
nesta_case1354_pegaseapi
nesta_case1394sop_eirapi
nesta_case1397sp_eirapi
nesta_case1460wp_eirapi
nesta_case2224_edinapi
nesta_case2383wp_mpapi
nesta_case2736sp_mpapi
nesta_case2737sop_mpapi
nesta_case2746wp_mpapi
nesta_case2746wop_mpapi
nesta_case2869_pegaseapi
nesta_case3012wp_mpapi
nesta_case3120sp_mpapi
nesta_case3375wp_mpapi
nesta_case9241_pegaseapi

35 base cases

nesta_case3_lmbd
nesta_case4_gs
nesta_case5_pjm
nesta_case6_c
nesta_case6_ww
nesta_case9_wscc
nesta_case14_ieee
nesta_case24_ieee_rts
nesta_case29_edin
nesta_case30_as
nesta_case30_fsr
nesta_case30_ieee
nesta_case39_epri
nesta_case57_ieee
nesta_case73_ieee_rts
nesta_case89_pegase
nesta_case118_ieee
nesta_case162_ieee_dtc
nesta_case189_edin
nesta_case300_ieee
nesta_case1354_pegase
nesta_case1394sop_eir
nesta_case1397sp_eir
nesta_case1460wp_eir
nesta_case2224_edin
nesta_case2383wp_mp
nesta_case2736sp_mp
nesta_case2737sop_mp
nesta_case2746wp_mp
nesta_case2746wop_mp
nesta_case2869_pegase
nesta_case3012wp_mp
nesta_case3120sp_mp
nesta_case3375wp_mp
nesta_case9241_pegase

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Brute Force R&D Example

The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow

https://arxiv.org/abs/1502.07847

nes ne nest **(**) nesta_ca nesta nesta nesta_c nesta_c nesta_ca nesta_ca nesta nesta_ca nesta_case24 C nesta nesta_0 nesta_ca nesta_ca nesta_case7 nesta_case nesta_cas nesta_case16 nesta_cas nesta_case nesta_case23 nesta_case2 nesta_case27 nesta_case28 nesta_case3 nesta_case92 nesta_ca nesta nesta_c nest nesta_ca nesta_case2 nesta_cas nesta nesta_ca nesta_case7 nesta_cas nesta_case162 nesta_cas nesta_cas nesta_case nesta case23 nesta_case2 nesta_case2' nesta case nesta_case274 nesta case30 nesta_case3 nesta_case924

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Power Formulations

TABLE III											
QUALITY AND RUNTIME RESULTS OF AC POWER FLOW RELAXATIONS											
	\$/h		Optimality	' Gap (%)		Runti	ime (second	s)		
Test Case	AC	SDP	QC	SOC	СР	AC	SDP	QC	SOC	СР	
Typical Operating Conditions (TYP)											
sta_case3_lmbd	5812.64	0.39	1.24	1.32	2.99	0.12	4.16	0.07	0.05	0.03	
esta_case5_pjm	17551.89	5.22	14.54	14.54	15.62	0.04	5.36	0.09	0.03	0.05	
sta_case30_ieee	204.97	0.00	15.64	15.88	27.91	0.09	8.38	0.17	0.07	0.06	
a_case118_ieee	3718.64	0.06	1.72	2.07	7.87	0.41	12.62	0.87	0.43	0.05	
se162_ieee_dtc	4230.23	1.08	4.00	4.03	15.44	0.61	35.20	1.48	0.31	0.04	
a_case300_ieee	16891.28	0.08	1.17	1.18	n.a.	0.80	29.69	2.83	0.65	n.a.	
_case2224_edin	38127.69	1.22	6.03	6.09	8.45	11.42	690.16	65.59	45.99	0.33	
ase2383wp_mp	1868511.78	0.37	1.04	1.05	5.35	12.41	1966.10	57.87	12.91	0.80	
ase3012wp_mp	2600842.72		1.00	1.02	n.a.	12.40	14588.79 [†]	53.59	19.15	n.a.	
ase9241_pegase	315913.26		1.67		n.a.	132.25		3064.42		n.a.	
Congested Operating Conditions (API)											
ase3 lmbd api	367.74	1.26	1.83	3.30	14.79	0.18	4.41	0.09	0.05	0.23	
case6 ww api	273.76	0.00*	13.14	13.33	17.17	0.34	13.19	0.07	0.06	0.03	
use14 jeee api	325.56	0.00	1.34	1.34	8.89	0.19	5.64	0.11	0.08	0.94	
4 jeee rts api	6421.37	1 45	13 77	20.70	24.12	0.14	7 50	0.26	0.09	0.04	
case30 as api	571.13	0.00	4 76	4 76	8.01	0.11	6.12	0.17	0.05	1 11	
case30_usupi	372.14	11.06	45.97	45.97	48.80	0.50	7 25	0.19	0.09	0.92	
use30 jeee ani	415 53	0.00	1.01	1.01	12.75	0.07	6.60	0.19	0.09	0.03	
use39_neeeapi	7466.25	0.00	2.97	2 99	13 31	0.07	7 36	0.19	0.02	0.03	
<u>3 jeee rts ani</u>	20123.98	4 29	12.01	14 34	17.83	0.10	10.03	0.29	0.12	0.04	
89 pegase ani	4288.02	18.11	20.39	20.43	22.60	1 16	21.58	1 29	0.20	0.00	
e118 jeee ani	10325.27	31.50	43.93	44.08	49.69	0.46	12.59	0.84	0.01	0.01	
<u>ieee dtc_api</u>	6111.68	0.85	1 33	1 34	19.39	0.10	36.85	1 53	0.29	0.05	
e189 edin ani	1982.82	0.05	5 78	5 78	n a	1.07	16.10	1.55	0.33	n a	
2224 edin ani	46235.43	1 10	2 77	2 77	9.07	12.28	672.04	81.66	88.33	0.33	
83wn mn ani	23499.48	0.10	1.12	1.12	3.10	9.50	1421 39	28.37	10.25	0.34	
736sp mp_api	25437.70	0.10	1.12	1.12	3.10	9.30	2278 77	41 29	10.23	0.34	
<u>750sp_np_api</u>	21102.40	0.07	1.52	1.05	1.62	0.20	1887.22	30.94	0.01	0.30	
69 negase ani	96573.10	0.00	1.05	1.00	5.16	21.03	1579.87	102 55	161.96	0.32	
120cn mn oni	22874.08	0.72	2.02	2.02	5.10 no	14.02	15018 02	41.72	101.90	0.57	
120sp_np_api	22074.90		$\frac{5.02}{2.45}$	$\frac{3.03}{2.50}$	11.d.	14.92	13018.93	3511.60	8387.11	11.a.	
+1_pegaseapi	241975.10	<u> </u>	2.43	2.39	11.d.	(CAD)		3311.00	0307.11	II.a.	
2 1 1 1 1	5000 70	Small A	ngle Diff	erence Co	onditions	(SAD)	4.20	0.10	0.07	0.02	
se3_Imbdsad	5992.72	2.06	1.24^	4.28	5.90	0.19	4.39	0.10	0.05	0.03	
_case4_gssad	324.02	0.05	0.81	4.90	66.06	0.24	4.16	0.06	0.06	0.07	
ase5_pjm_sad	26423.32	0.00	1.10	3.61	43.95	0.08	5.35	0.11	0.05	0.03	
a_case6_csad	24.43	0.00	0.40	1.36	6.79	0.26	5.32	0.11	0.05	0.02	
ise9_wsccsad	5590.09	0.00	0.41	1.50	0.09	0.14	4.18	0.19	0.05	0.03	
4_1eee_rtssad	/9804.96	0.05	3.88	11.42	23.30	0.10	6.24	0.30	0.11	0.04	
se29_edinsad	46933.26	28.44	20.57	34.47	30.79	0.70	9.19	1./3	0.27	0.06	
cases0_assad	914.44	0.47	3.07	9.10	10.00	0.18	0.49	0.22	0.09	0.03	
se30_ieeesad	205.11	0.00	3.90	5.84	27.96	0.12	7.49	0.18	0.09	0.03	
3_1eee_rtssad	235241.70	4.10	3.51	8.37	22.21	0.30	9.48	0.87	0.20	0.07	
e118_ieeesad	4324.17	1.57	8.32	12.89	20.77	0.50	14.14	0.98	0.31	0.06	
<u>atcsad</u>	4369.19	3.65	0.91	/.08	18.13	0.81	39.71	1.70	0.36	0.05	
e189_edinsad	914.61	1.20^	2.22	2.25	n.a.	0.65	14.83	1.27	0.46	n.a.	
esuu_ieee_sad	16910.23	0.13	1.10	1.20	n.a.	1.01	29.63	2.81	0.76	n.a.	
2224_edin_sad	38385.14	1.22	5.5/	0.18	9.06	11.53	091.53	50.34	03.68	0.33	
83wp_mp_sad	1935308.12	1.30	2.97	4.00	8.62	10.25	1/85.26	40./1	12.5/	0.80	
/ 30sp_mpsad	155/042.77	2.18*	2.01	2.34	4.56	13.22	1/3/.25	35.42	11.31	0.48	
5/sop_mpsad	/95429.36	2.24*	2.21	2.42	3.95	13.01	2153.37	32.05	9.69	0.39	
46wp_mpsad	16/2150.46	2.41*	1.83	2.44	5.43	14.01	2840.32	35.66	13.32	0.56	
owop_mpsad	1241955.30	2.71*	2.48	2.94	5.14	14.51	2306.18	32.41	23.22	0.42	
12wp_mpsad	2635451.29		1.92	2.12	n.a.	15.79	13548.131	46.59	28.41	n.a.	
120sp_mpsad	2203807.23		2.56	2.79	n.a.	30.01	16804.55 [†]	53.81	15.69	n.a.	
11_pegasesad	315932.06		0.80	1.75	n.a.	80.30		3531.62	33437.86	n.a.	

Unexpected **Insights!**

bold - the relaxation provided a feasible AC power flow, \star - solver reported numerical accuracy warnings, —, † - iteration or memory limit

UNCLASSIFIED

LA-UR-17-24522

19

Brute Force R&D Lessons Learned

- Reproducing previous works is challenging
 - working from a base implementation is very helpful

• AMPL was not built for this...

- limited means to avoid excessive code replication
- really hard to automate from the command line
- limited licenses was the bottle neck in the All Formulations by All Instances Experiment

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Matpower Effect

- If a formulation is not implemented in Matpower, it does not exist
 - At least for the majority of Power System PhD students

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

21

Inception of **PowerModels.il**

- A baseline implementation of Power Flow formulations from the literature
 - Hopefully, mitigates the Matpower effect
- Using Julia/JuMP Resolves the AMPL Issues
 - Easy to automate at the command line
 - Fully open-source makes large-scale experiments easy
 - Julia enables advanced software design

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

My Dream

- formulation
- It is implemented in PowerModels.jl and less
- to enable this

UNCLASSIFIED

I learn about a newly proposed Power Flow

tested on all started test cases, in 7 days or

Lots of code abstractions in PowerModels.jl

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

The Value of Open-Source

TABLE III QUALITY AND RUNTIME RESULTS OF AC POWER FLOW RELAXATIONS \$/h Optimality Gap (%) Runtime (seconds)	https://lanl_a	anci c	hithuk	n in/Pn	vorN/	odolo	a il/la	atact	./
Test Case AC SDP QC SOC CP AC SDP QC SOC CP	<u>111175.//10111-0</u>	<u>an 51. C</u>	JILIIUI	<u>J.IU/I UI</u>		<u>UUER</u>	<u>) / C</u>	<u> 11531</u>	./
nesta_case3_lmbd 5812.64 0.39 1.24 1.32 2.99 0.12 4.16 0.07 0.05 0.03 i 17551.00 522 1.52 1.52 1.52 0.04 525 0.03 0.05 0.03	-						-		
nesta_case3_pjm 1/551.89 5.22 14.54 15.62 0.04 5.36 0.09 0.03 0.05 nesta_case30_ieee 204.97 0.00 15.64 15.88 27.91 0.09 8.38 0.17 0.07 0.06									
nesta_case118_ieee 3718.64 0.06 1.72 2.07 7.87 0.41 12.62 0.87 0.43 0.05	Software Versions								
nesta_case102_1eee_dtc 4230.23 1.08 4.00 4.03 15.44 0.61 55.20 1.48 0.51 0.04 nesta_case300_ieee 16891.28 0.08 1.17 1.18 n.a. 0.80 29.69 2.83 0.65 n.a.									
nesta_case2224_edin 38127.69 1.22 6.03 6.09 8.45 11.42 690.16 65.59 45.99 0.33									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PowerModels il· v0.3 1-18-9	a0785a2 a0	785a28341	1986f92cebeee9a	4be3482a6	dd4d2e			
nesta_case9241_pegase 315913.26 — 1.67 — n.a. 132.25 — 3064.42 — n.a.		1070502,00	/05420011	1/001/2005000/0		du luze			
nesta case3 lmbd api 367.74 1.26 1.83 3.30 14.79 0.18 4.41 0.09 0.05 0.23									
nesta_case6_ww_api 273.76 0.00* 13.14 13.33 17.17 0.34 13.19 0.07 0.06 0.03	lpopt.jl: v0.2.6, 959b9c67e39	96a6e2307f	c022d26b0)d95692ee6a4					
nesta_case14_ieeeapi 325.56 0.00 1.34 1.34 8.89 0.19 5.64 0.11 0.08 0.94 nesta_case24_ieee_rts_api 6421.37 1.45 13.77 20.70 24.12 0.14 7.50 0.26 0.09 0.04									
nesta_case30_as_api 571.13 0.00 4.76 4.76 8.01 0.38 6.12 0.17 0.11 1.11 nesta_case30_as_api 372.14 11.06 45.07 45.07 45.07 45.07 0.25 7.25 0.10 0.00 0.02			4 (7) 04 10						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	NESTA: V0.6.1, 466cd045d8:	526862686	16/b91ad8	3fa842ddf3da					
nesta_case39_epri_api 7466.25 0.00 2.97 2.99 13.31 0.10 7.36 0.29 0.12 0.04 nesta_case73_iege_rts_api 20123.98 4.29 12.01 14.34 17.83 0.48 10.03 0.66 0.20 0.06									
nesta_case89_pegase_api 4288.02 18.11 20.39 20.43 22.60 1.16 21.58 1.29 0.81 0.04	Hardware: Dual Intel 2 10GH	Tr CPI ls 12	8GB RAM						
nesta_case118_ieee_api 10325.27 31.50 43.93 44.08 49.69 0.46 12.59 0.84 0.25 0.05 nesta_case162_ieee_dtc_api 6111.68 0.85 1.33 1.34 19.39 0.50 36.85 1.53 0.39 0.05	Haluwale. Dual littel 2.100Hz CP05, 1200D KAM								
nesta_case189_edin_api 0111.00 0.05 1.07 0.05 0.05 0.05 0.05 nesta_case189_edin_api 1982.82 0.05 5.78 5.78 n.a. 1.07 16.10 1.14 0.33 n.a.									
nesta_case2224_edin_api 46235.43 1.10 2.77 2.77 9.07 12.28 672.04 81.66 88.33 0.33 nesta_case2383wp mp_api 23499.48 0.10 1.12 1.12 3.10 9.50 1421.39 28.37 10.25 0.34	Turing I On suching of	·		`					
nesta_case2736sp_mp_api 25437.70 0.07 1.32 1.33 3.89 9.21 2278.77 41.29 10.51 0.36	Typical Operating C	onaitio	ns (TYP))					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>/</i> ·· · · ·			•					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					00	606	4.0	00	~~~
nesta_case3_lmbdsad 5992.72 2.06 1.24* 4.28 5.90 0.19 4.39 0.10 0.05 0.03					QC	SOC	AC	QC	SC
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Case Name	Nodes	Edges	AC(\$/h)	Gan	Gan	Time	Time	Tir
nesta_case6_c_sad 24.43 0.00 0.40 1.36 6.79 0.26 5.32 0.11 0.05 0.02 nesta_case6_c_sad 5500.00 0.00 0.41 1.50 6.69 0.14 0.10 0.05 0.02	Case Hume	Houes	Eages		Cup	Cup	11110		
nesta_case9_wscc_sad 5590.09 0.00 0.41 1.50 6.09 0.14 4.18 0.19 0.05 0.03 nesta_case24_ieee_rts_sad 79804.96 6.05 3.88 11.42 23.56 0.10 6.24 0.30 0.11 0.04					(%)	(%)	(sec.)	(sec.)	(se
nesta_case29_edinsad 46933.26 28.44 20.57 34.47 36.79 0.70 9.19 1.73 0.27 0.06									
Inesta_case30_iaeesad 205.11 0.00 3.96 5.84 27.96 0.12 7.49 0.18 0.09 0.03		•	•	0.075 (4.55	4.40	-	•	~
nesta_case73_ieee_rts_sad 235241.70 4.10 3.51 8.37 22.21 0.30 9.48 0.87 0.20 0.07 nesta_case118_ieee_sad 4324.17 7.57 8.32 12.89 20.77 0.56 14.14 0.98 0.31 0.06	nesta_case3_cc	3	3	2.0756e+02	1.55	1.62	5	2	2
nesta_case162_ieee_dtc_sad 4369.19 3.65 6.91 7.08 18.13 0.81 39.71 1.70 0.36 0.05									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	posta caso3 cas	3	3	101710+02	1 60	1 60	5	2	2
nesta_case2224_edin_sad 38385.14 1.22 5.57 6.18 9.06 11.53 691.53 50.34 65.68 0.33	nesta_case5_cgs	5	5	1.017 16+02	1.07	1.07	5	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
nesta_case2737sop_mp_sad 795429.36 2.24* 2.21 2.42 3.95 13.01 2153.37 32.05 9.69 0.39	nesta case3 lmbd	3	3	5.8126e+03	1.22	1.32	5	2	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-				-	_	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nesta_case3_ch	3	5	9.8740e+01	100.01	100.01	5	2	2
bold - the relaxation provided a feasible AC power flow, * - solver reported numerical accuracy warnings, —,† - iteration or memory limit									
	nacto constant	4	4	1 5 (40 - 100	0.01	0.01	F	2	0
	nesta_case4_gs	4	4	1.56436+02	0.01	0.01	5	2	2
	nesta case5 nim	5	6	17552e+04	14 55	14 55	5	2	2
	nesta_cases_pjin	5	J	1.7 3320104	14.55	14.55	5	~	2
Operated by Los Alamos N									
	and a second F dealer	_	7	0.000000	0.04	0.01	_	0	0

24

PowerModels.jl Core Features

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

PowerModels.jl

Under Construction

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

UNCLASSIFIED

PowerModels.jl Structure

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Average user not interested in the modeling details, just wants it to work.

27

Matpower Data is the R&D Standard

```
function mpc = nesta_case3_lmbd
mpc.version = '2';
mpc.baseMVA = 100.0;
mpc.bus = [
                       110.0
                               40.0
                                                                 1.10
                                               0.0
       1
                                       0.0
                3
                                                      1
       2
                2
2
                                               0.0
                                                      1
                       110.0
                               40.0
                                       0.0
                                                                 0.92
       3
                                                      1
                        95.0
                                               0.0
                               50.0
                                       0.0
                                                                 0.90
];
mpc.gen = [
                               54.697 1000.0 -1000.0
                                                              1.1
                148.067
       1
                               -8.791 1000.0 -1000.0
                                                              0.92617
                170.006
       2
       3
                0.0
                       -4.843 1000.0 -1000.0
                                                      0.9
                                                              100.0
];
mpc.gencost = [
                                         0.110000
                                                         5.000000
       2
                0.0
                        0.0
                                3
       2
                        0.0
                               3
                                         0.085000
                0.0
                                                        1.200000
                0.0
                        0.0
        2
                               3
                                         0.00000
                                                        0.00000
];
mpc.branch = |
                                       0.45
                       0.065
                               0.62
                                               9000.0 0.0
                                                              0.0
       1
                3
       3
                       0.025
                               0.75
                                       0.7
                                               50.0
                                                              0.0
                2
                                                      0.0
       1
                2
                        0.042
                                               9000.0 0.0
                               0.9
                                       0.3
                                                              0.0
];
```


000 617 000	-0.00000 7.25883 -17.26710		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		1. 1. 1.	10000 10000 10000	0. 0. 0.		
100.0 1	1 100.0 0.0	2000.0 1 0.0	0.0 2000.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0. 0. 0.
0.00 0.00 0.00	0000; 0000; 0000;								
0.0 0.0 0.0	0.0 0.0 0.0	1 1 1	-30.0 -30.0 -30.0	30.0; 30.0; 30.0;					

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-17-24522

0.0 0.0 0.0

Parsing Matpower Files

using PowerModels

network_data > PowerModels.parse_file("nesta_case3_lmbd.m")

println(network data["bus"]["1"]["pd"]) > 1.1

Parser supports user-defined extensions to the Matpower format

https://lanl-ansi.github.io/PowerModels.jl/latest/data.html

julia dictionary

raw text

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Your First PowerModel (OPF)

- using PowerModels; using Ipopt solver = IpoptSolver()
- result = run_ac_opf("nesta_case3_lmbd.m", solver)
- result = run_dc_opf("nesta_case3_lmbd.m", solver)
- run_opf(nesta_case3_lmbd.m", ACPPowerModel, solver) run_opf("nesta_case3_lmbd.m", DCPPowerModel, solver) run opf(nesta case3 lmbd.m", SOCWRPowerModel, solver)

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Inspecting the Results

using PowerModels; using Ipopt solver = IpoptSolver()

result = run opf("nesta case3 lmbd.m", ACPPowerModel, solver)

println(result["objective"]) > 5812.64293503618

println(result["solve time"]) > 0.009732971

println(result["solution"]) ("gen",Dict{String,Any}(Pair{String,Any}("1",Dict{String,Any}...

UNCLASSIFIED

julia dictionary (standard structure)

> Dict{String,Any}(Pair{String,Any}("baseMVA",100.0),Pair{String,Any}

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Modifying Network Data

- using PowerModels; using Ipopt solver = IpoptSolver()
- network_data = PowerModels.parse_file("nesta_case3_lmbd.m")
- network data["bus"]["3"]["pd"] = 0.0 network data["bus"]["3"]["qd"] = 0.0
- result 1 = run ac opf(network data, solver)
- network data["bus"]["3"]["pd"] = 1.0 network data["bus"]["3"]["qd"] = 0.5

result_2 = run_ac_opf(network_data, solver)

- UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Solving Different Problems

using PowerModels; using Ipopt solver = IpoptSolver()

Base Non-Convex Model run_pf("case5_pjm_tnep.m", ACPPowerModel, solver) run_opf("case5_pjm_tnep.m", ACPPowerModel, solver) run_ots("case5_pjm_tnep.m", ACPPowerModel, solver) run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)

Linear Approximation run_pf("case5_pjm_tnep.m", DCPPowerModel, solver) run_opf("case5_pjm_tnep.m", DCPPowerModel, solver) run ots("case5 pjm tnep.m", DCPPowerModel, solver) run_tnep("case5_pjm_tnep.m",

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Solving Different Problems

using PowerModels; using Ipopt solver = IpoptSolver()

Base Non-Convex Model run_pf("case5_pjm_tnep.m", ACPPowerModel, solver) run_opf("case5_pjm_tnep.m", ACPPowerModel, solver) run_ots("case5_pjm_tnep.m", ACPPowerModel, solver) run_tnep("case5_pjm_tnep.m", ACPPowerModel, solver)

Convex Relaxation run_pf("case5_pjm_tnep.m", SOCWRPowerModel, solver) run_opf("case5_pjm_tnep.m" SOCWRPowerModel, solver) run_ots("case5_pjm_tnep.m" SOCWRPowerModel, solver) run_tnep("case5_pjm_tnep.m", SOCWRPowerModel_ solver)

This software design helps to organize 100s of possible **Problem / Formulation combinations**

Convex Formulation UNCLASSIFIED

Where is JuMP?

using PowerModels; using Ipopt solver = IpoptSolver()

result = run_opf("nesta_case3_lmbd.m", ACPPowerModel, solver)

result = solve generic model(pm, solver)

println(pm.model) # show / modify the JuMP model

result = solve generic model(pm, solver)

- pm = build generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)

- pm = build_generic_model("nesta_case3_lmbd.m", ACPPowerModel, PowerModels.post_opf)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-17-24522

35

PowerModels Problem Definition (OPF) Implicit variable_voltage(pm) variable_generation(pm) variables: variable_line_flow(pm) = $\blacktriangleright S_i^g \quad \forall i \in N$ objective_min_fuel_cost(pm) $\forall V_i \;\; \forall i \in N$ minimize: constraint_theta_ref(pm) constraint_voltage(pm) $f(S_i^g)$ for (i,bus) in pm.ref[:bus] constraint_kcl_shunt(pm, bus) subject to: end $(\boldsymbol{v}_i^{\boldsymbol{l}})^2 \le V_i V_i^* \le (\boldsymbol{v}_i^{\boldsymbol{u}})^2 \quad \forall i \in N$ $\boldsymbol{S_i^{gl}} \leq S_i^g \leq \boldsymbol{S_i^{gu}} \ \forall i \in N$ for (i,branch) in pm.ref[:branch] constraint_ohms_yt_from(pm, branch) $S_i^g - S_i^d = \sum S_{ij} \quad \forall i \in N$ constraint_ohms_yt_to(pm, branch) $(i,j) \in E \cup E^R$ constraint_phase_angle_difference(pm, branch) $S_{ij} = Y_{ij}^* V_i V_i^* - Y_{ij}^* V_i V_j^* \quad (i,j) \in E \cup E^R$ constraint_thermal_limit_from(pm, branch)___ $|S_{ij}|^2 \le (\boldsymbol{s}_{ij}^{\boldsymbol{u}})^2 \quad \forall (i,j) \in E \cup E^R$ constraint_thermal_limit_to(pm, branch) = ena

function post_opf(pm::GenericPowerModel)

end

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

PowerModels.jl Road Map

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Versions Convention

Will be zero for some time

breaking changes

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

vX.Y.Z

Non-breaking changes

• LOS

Versions Past and Planned

- v0.1.0 (2016 Q2-Q3)
 - First draft (basically learning Julia / JuMP)
- v0.2.0 (2016 Q3-Q4)
 - First public version, Thanks to Miles
- v0.3.0 (2017 Q1-Present)
 - Significant engineering improvements
- v0.4.0 (2017, I hope)
 - Massive renaming of stuff
 - Adding many more formulations from the literature

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Contributions Welcome!

- problems and formulations
- Excited to add,
 - New problem classes
 - e.g. moment-based relaxations)
- Addressing anything in the github issues

UNCLASSIFIED

This is a community resource for established

New formulations (especially complex ones,

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Questions / Comments?

cjc@lanl.gov

Why have these *****PowerModel Things?**

42