
Introducing Plasmo.jl
A Package for Graph-Based Modeling using JuMP

Jordan Jalving and Victor Zavala

Department of Chemical and Biological Engineering
University of Wisconsin-Madison

JuMP Developers Meetup
June 13th, 2017

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 1 / 25

Plasmo.jl - What is it?

Platform for Scalable Modeling and Optimization

A Graph-based modeling and optimization framework

Key Features:
Component models associated with nodes and edges
Facilitates construction of hierarchical graphs (uses subgraphs)
Modularization of component models
Manipulate graph structure for solver interface
Ease of modeling complex systems

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 2 / 25

Overview

Motivation - Complex systems
Modeling Systems with Components (Graphs)
Applications
Design considerations
Goals right now

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 3 / 25

Group Research Theme:Complex Systems

Multi-scale systems

Multi-stage stochastic
programs

x1 x2

x3

Asynchronous systems

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 4 / 25

Types of Problems

Nonlinear (nonconvex)
optimization
Stochastic programming
Model predictive control
Some Applications

I Enery storage systems
I Connected infrastructure
I Microgrids

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 5 / 25

Hierarchical Networks

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 6 / 25

Technology Landscapes

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 7 / 25

Challenges with complex physical systems

Millions of constraints and
variables can make the
computation intractable

I Generally apply ad-hoc
methods to perform some
model reduction

Millions of system connections
makes model instantiation
non-trivial

I Multiple scenarios
I Solution inspection

Modeling asynchronicity in
large communicating systems
is non trivial

I Decentralized control

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 8 / 25

Some existing modeling frameworks

Modelica
I Components, hierarchies,

architectures (highly
abstracted)

I Designed for simulation
(Optimica extension does
some optimization)

I Write connectors for
coupling (I always found this
difficult)

gProms
I Equation oriented chemical

flowsheeting software
I Custom modeling language
I Commercial

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 9 / 25

Revisiting our Goals

Model encapsulation
Modularity and reuse
Navigate solutions to complex optimization problems
Facilitate modeling of communicating systems

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 10 / 25

The Power of Abstraction - Graphs

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 11 / 25

Relevant Graph Concepts
Graph Definition
A graph (G) is a finite set V(G) of vertices (nodes) and a finite family
E(G) of pairs of elements of V(G) called edges

Vertex Edge

A

A is a subgraph of B

B
The degree of a node is
specific to its graph

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 12 / 25

Graph Based Modeling

Plasmo associates model components with nodes and edges

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 13 / 25

Plasmo.jl - Key Features

Key Features (some in progress):
Associates models (JuMP Models) and linking information
(constraints) with nodes and edges within a graph
Exploits a subgraph abstraction to enable hierarchies of models
(multiple graphs defined on a set of nodes)
Uses LightGraphs.jl as the graph backend
Accesses model information on nodes and edges
Provides interfaces with structured solvers (PIPS, etc...)

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 14 / 25

https://github.com/JuliaGraphs/LightGraphs.jl

Plasmo - Old syntax (still supported)
using Plasmo
graph = PlasmoGraph () #Create a graph
n1 = add_node ! (graph)
n2 = add_node ! (graph)
n3 = add_node ! (graph)
edge1 = add_edge ! (graph , n1 , n2)
edge2 = add_edge ! (graph , n1 , n3)
#Set component models
setmodel ! (n1 , simple_model ())
setmodel ! (n2 , simple_model ())
setmodel ! (n3 , simple_model ())
#prov ide l i n k i n g i n fo rma t i on
setcouplingfunction ! (graph , edge1 , couplenodes)
setcouplingfunction ! (graph , edge2 , couplenodes)
model = generate_model (graph)
s e t s o l v e r (model , Ipop tSo lve r ())
so lve (model)

function couplenodes (m: : Model , graph , edge)
@constraint (m, getconnectedfrom (graph , edge) [: x]
== getconnectedto (graph , edge [: x]))

end

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 15 / 25

New Syntax - In Progress

using Plasmo
#Create a graph
m = GraphModel (so l ve r = Ipop tSo lve r ())
n1 = add_node ! (m)
n2 = add_node ! (m)
n3 = add_node ! (m)
edge1 = add_edge ! (m, n1 , n2)
edge2 = add_edge ! (m, n1 , n3)
#Set component models
setmodel ! (n1 , simple_model ())
setmodel ! (n2 , simple_model ())
setmodel ! (n3 , simple_model ())
l i n k the two models
@linkconstraint (edge1 , getconnectedfrom (m, edge1) [: x]
== getconnectedto (edge1) [: x])
@linkconstraint (edge2 , getconnectedfrom (m, edge2) [: x]
== getconnectedto (edge2) [: x])
so lve (m) #solve w i th Ipop t
#so lve_p ips (m, n1 , [n2 , n3]) #solve wi th PIPS NLP

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 16 / 25

Gas Networks

ℓ12ℓ1

n1 n13n2

ℓ2

n12n3 n11

∆θℓ11

ℓ11
θn13

θn1

θn2

∆θℓ3∆θℓ2

s

d

fℓ1(Lℓ1) = fout
ℓ11

pℓ2(0) = θn2
+∆θℓ2

pℓ2(Lℓ2) = θn3 fℓ1(0) = f in
ℓ11

N : Set of nodes in the gas network (junctions)
L: Set of links (pipelines)
S ⊆ N : Set of gas supplies
D ⊆ N : Set of gas demands
La ⊆ L: Set of active links (pipelines with compressors)
Lp ⊆ L: Set of passive links (pipelines without compressors)

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 17 / 25

Gas Networks

Mass and Momentum Balances on a Network

∂p`(t , x)

∂t
+

c2

A`

∂f`(t , x)

∂x
= 0, ` ∈ L

∂f`(t , x)

∂t
+

2c2f`(t , x)

A`p`(t , x)

∂f`(t , x)

∂x
− c2f`(t , x)2

A`p`(t , x)2
∂p`(t , x)

∂x
+ A`

∂p`(t , x)

∂x
= −8c2λA`

π2D5
`

f`(t , x)

p`(t , x)
|f`(t , x)| , ` ∈ L

Compressor Power

P`(t) = cp · T · fin,`

((
pin,`(t) + ∆p`(t)

pin,`(t)

) γ−1
γ

− 1

)
, ` ∈ La

Boundary Conditions
p`(0, t) = pin,`(t) + ∆p`(t), ` ∈ La

p`(0, t) = pin,`(t), ` ∈ Lp

p`(L`, t) = pout ,`(t), ` ∈ L
Node Conservation∑
`∈Lrec

n

fout ,`(t)−
∑

`∈Lsnd
n

fin,`(t) +
∑
i∈Sn

gi(t)−
∑
j∈Dn

dgas
j (t) = 0, n ∈ N

Supply and Demand
fdeliver ,n(t) ≤ fdemand ,n(t),n ∈ D

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 18 / 25

Graph Based Modeling - Gas Networks

The subgraph abstraction allows multiple couplings on the same
node
This can be used to build modular systems and couple them at
higher levels

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 19 / 25

Graph Based Modeling - Coupled Networks

m = GraphModel ()
graph = getgraph (m)
add_subgraph ! (graph , power_network)
add_subgraph ! (graph , gas_network)
generator = getnode (power_network , : gen)
demand = getnode (gas_network , : demand)
l i n k = add_edge ! (graph , generator , demand)
@linkconstraint (l i n k , getconnectedfrom (graph , l i n k) [: Pgend] <=
getconnectedto (graph , l i n k) [: f d e l i v e r])

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 20 / 25

Graph Based Modeling - Coupled Networks

Key Findings:
Infrastructure models (graphs) can be developed independently
and coupled within larger systems (graphs)
Illinois Case Study: 7% more gas delivered to generators; 27%
revenue increase versus uncoordinated case
Uncoordinated case simulated by solving successive optimization
problems

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 21 / 25

Multistage Stochastic Programming

Our graph abstraction
corresponds to the
node-based abstraction in
multistage stochastic
programming
Component models
associated within nodes
(scenarios)
Link constraints propogate
transition from stage to stage

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 22 / 25

Embedding Graph Models

Graph models can themselves be embedded as models in nodes
or edges
Simplifies construction of multiple layers in systems

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 23 / 25

Future Direction

Generalize the model interface
if possible (strictly uses JuMP)
Find suitable abstraction for
computational workflows

I Decentralized control
I Algorithmic strategies (e.g.

scheduling and operations)
I Graph partitioning and

model reduction
I Initialization strategies

Simulation interfaces

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 24 / 25

Goals right now

Finalize physical model abstraction
Push first version to github
Figure out a suitable graph communication abstraction

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 25 / 25

