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Plasmo.jl - What is it?

Platform for Scalable Modeling and Optimization

A Graph-based modeling and optimization framework

Key Features:
Component models associated with nodes and edges
Facilitates construction of hierarchical graphs (uses subgraphs)
Modularization of component models
Manipulate graph structure for solver interface
Ease of modeling complex systems
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Overview

Motivation - Complex systems
Modeling Systems with Components (Graphs)
Applications
Design considerations
Goals right now
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Group Research Theme:Complex Systems

Multi-scale systems

Multi-stage stochastic
programs

x1 x2

x3

Asynchronous systems
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Types of Problems

Nonlinear (nonconvex)
optimization
Stochastic programming
Model predictive control
Some Applications

I Enery storage systems
I Connected infrastructure
I Microgrids
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Hierarchical Networks
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Technology Landscapes
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Challenges with complex physical systems

Millions of constraints and
variables can make the
computation intractable

I Generally apply ad-hoc
methods to perform some
model reduction

Millions of system connections
makes model instantiation
non-trivial

I Multiple scenarios
I Solution inspection

Modeling asynchronicity in
large communicating systems
is non trivial

I Decentralized control
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Some existing modeling frameworks

Modelica
I Components, hierarchies,

architectures (highly
abstracted)

I Designed for simulation
(Optimica extension does
some optimization)

I Write connectors for
coupling (I always found this
difficult)

gProms
I Equation oriented chemical

flowsheeting software
I Custom modeling language
I Commercial
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Revisiting our Goals

Model encapsulation
Modularity and reuse
Navigate solutions to complex optimization problems
Facilitate modeling of communicating systems
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The Power of Abstraction - Graphs
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Relevant Graph Concepts
Graph Definition
A graph (G) is a finite set V(G) of vertices (nodes) and a finite family
E(G) of pairs of elements of V(G) called edges

Vertex Edge

A

A is a subgraph of B

B
The degree of a node is
specific to its graph
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Graph Based Modeling

Plasmo associates model components with nodes and edges
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Plasmo.jl - Key Features

Key Features (some in progress):
Associates models (JuMP Models) and linking information
(constraints) with nodes and edges within a graph
Exploits a subgraph abstraction to enable hierarchies of models
(multiple graphs defined on a set of nodes)
Uses LightGraphs.jl as the graph backend
Accesses model information on nodes and edges
Provides interfaces with structured solvers (PIPS, etc...)
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https://github.com/JuliaGraphs/LightGraphs.jl


Plasmo - Old syntax (still supported)
using Plasmo
graph = PlasmoGraph ( ) #Create a graph
n1 = add_node ! ( graph )
n2 = add_node ! ( graph )
n3 = add_node ! ( graph )
edge1 = add_edge ! ( graph , n1 , n2 )
edge2 = add_edge ! ( graph , n1 , n3 )
#Set component models
setmodel ! ( n1 , simple_model ( ) )
setmodel ! ( n2 , simple_model ( ) )
setmodel ! ( n3 , simple_model ( ) )
#prov ide l i n k i n g i n fo rma t i on
setcouplingfunction ! ( graph , edge1 , couplenodes )
setcouplingfunction ! ( graph , edge2 , couplenodes )
model = generate_model ( graph )
s e t s o l v e r ( model , Ipop tSo lve r ( ) )
so lve ( model )

function couplenodes (m: : Model , graph , edge )
@constraint (m, getconnectedfrom ( graph , edge ) [ : x ]
== getconnectedto ( graph , edge [ : x ] ) )

end
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New Syntax - In Progress

using Plasmo
#Create a graph
m = GraphModel ( so l ve r = Ipop tSo lve r ( ) )
n1 = add_node ! (m)
n2 = add_node ! (m)
n3 = add_node ! (m)
edge1 = add_edge ! (m, n1 , n2 )
edge2 = add_edge ! (m, n1 , n3 )
#Set component models
setmodel ! ( n1 , simple_model ( ) )
setmodel ! ( n2 , simple_model ( ) )
setmodel ! ( n3 , simple_model ( ) )
# l i n k the two models
@linkconstraint ( edge1 , getconnectedfrom (m, edge1 ) [ : x ]
== getconnectedto ( edge1 ) [ : x ] )
@linkconstraint ( edge2 , getconnectedfrom (m, edge2 ) [ : x ]
== getconnectedto ( edge2 ) [ : x ] )
so lve (m) #solve w i th Ipop t
#so lve_p ips (m, n1 , [ n2 , n3 ] ) #solve wi th PIPS NLP
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Gas Networks

ℓ12ℓ1

n1 n13n2

ℓ2

n12n3 n11

∆θℓ11

ℓ11
θn13

θn1

θn2

∆θℓ3∆θℓ2

s

d

fℓ1(Lℓ1) = fout
ℓ11

pℓ2(0) = θn2
+∆θℓ2

pℓ2(Lℓ2) = θn3 fℓ1(0) = f in
ℓ11

N : Set of nodes in the gas network (junctions)
L: Set of links (pipelines)
S ⊆ N : Set of gas supplies
D ⊆ N : Set of gas demands
La ⊆ L: Set of active links (pipelines with compressors)
Lp ⊆ L: Set of passive links (pipelines without compressors)
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Gas Networks

Mass and Momentum Balances on a Network

∂p`(t , x)

∂t
+
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Compressor Power

P`(t) = cp · T · fin,`
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γ
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)
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Boundary Conditions
p`(0, t) = pin,`(t) + ∆p`(t), ` ∈ La

p`(0, t) = pin,`(t), ` ∈ Lp

p`(L`, t) = pout ,`(t), ` ∈ L
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∑
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∑
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gi(t)−
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j (t) = 0, n ∈ N

Supply and Demand
fdeliver ,n(t) ≤ fdemand ,n(t),n ∈ D
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Graph Based Modeling - Gas Networks

The subgraph abstraction allows multiple couplings on the same
node
This can be used to build modular systems and couple them at
higher levels
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Graph Based Modeling - Coupled Networks

m = GraphModel ( )
graph = getgraph (m)
add_subgraph ! ( graph , power_network )
add_subgraph ! ( graph , gas_network )
generator = getnode ( power_network , : gen )
demand = getnode ( gas_network , : demand)
l i n k = add_edge ! ( graph , generator , demand)
@linkconstraint ( l i n k , getconnectedfrom ( graph , l i n k ) [ : Pgend ] <=
getconnectedto ( graph , l i n k ) [ : f d e l i v e r ] )
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Graph Based Modeling - Coupled Networks

Key Findings:
Infrastructure models (graphs) can be developed independently
and coupled within larger systems (graphs)
Illinois Case Study: 7% more gas delivered to generators; 27%
revenue increase versus uncoordinated case
Uncoordinated case simulated by solving successive optimization
problems
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Multistage Stochastic Programming

Our graph abstraction
corresponds to the
node-based abstraction in
multistage stochastic
programming
Component models
associated within nodes
(scenarios)
Link constraints propogate
transition from stage to stage
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Embedding Graph Models

Graph models can themselves be embedded as models in nodes
or edges
Simplifies construction of multiple layers in systems

Jalving (UW-Madison) Plasmo.jl JuMP Meetup June 2017 23 / 25



Future Direction

Generalize the model interface
if possible (strictly uses JuMP)
Find suitable abstraction for
computational workflows

I Decentralized control
I Algorithmic strategies (e.g.

scheduling and operations)
I Graph partitioning and

model reduction
I Initialization strategies

Simulation interfaces
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Goals right now

Finalize physical model abstraction
Push first version to github
Figure out a suitable graph communication abstraction
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