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Motivation

Stochastic programming for hydro power operations

e Optimal orders on the day-ahead market
e Maintenance scheduling
e Long-term investments

e Wind/solar uncertainties

Advantages

e Multiple scenarios — More accurate models

e Parallel decomposition — Faster computations
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Contribution

Julia modules

e StochasticPrograms.jl
e | ShapedSolvers.jl
e HydroModels.jl
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Contribution

Julia modules

e StochasticPrograms.jl
e | ShapedSolvers.jl
e HydroModels.jl

Software Innovations

e Deferred model creation

e Data injection
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Initial Approach

HydroModel

o Data
o JuMP model

Julia struct for each model: ShortTerm, DayAhead
Parallel decomposition: L-shaped on StructJuMP.jl models

Performance: Solve extended form using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 6 /25



FKTHR

b e

L

Initial Approach

function define_structjump_problem(model::DayAheadModel)
model.internalmodels[:structured] = StructuredModel(num scenarios = numscenarios(model))
params = model.modeldata

é&ariable(internalmodel,xtii[t = model.hours] >= 0)

fér s in 1l:numscenarios(model)
block = StructuredModel(parent = internalmodel, id = s)

éQériable(block,O[p = model.plants, q = model.segments, t = model.hours],
lowerbound = 0,upperbound = params.Q [(p,q)])
@variable(block,S[p = model.plants, t = model.hours] >= 0)

@expression(block,value_of_stored water,
params.A_f*sum(M[p,hours(model.horizon)]*sum(params.p[i, 1]
for i = params.Qd[p])
for p = model.plants))
# Define objective
@objective(block, Max, net_profit + value of_stored water)

ééénstraint(block,production[s = model.scenarios, t = model.hours],
H[s,t] == sum(params.ulp,ql*Q[s,p,q,t]
for p = model.plants, q = model.segments)
)

ot
end
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function define_dep_problem(model: :DayAheadModel)
model.internalmodels[:dep] = Model()
params = model.modeldata

é&ériable(internalmodel,xtii[t = model.hours] >= 0)

éQériable(block,O[s = model.scenarios, p = model.plants, t = model.hours],
lowerbound = 0, upperbound = params.Q [(p,q)1)
@variable(block,S[s = model.scenarios, p = model.plants, t = model.hours] >= 0)

@expression(block,value_of_stored_water,
sum(scenarios[s].m*params.A_f*sum(M[s,p]l*sum(params.p[i, 1]
for i = params.Qd[p])
for p = model.plants)
for s = model.scenarios))
# Define objective
@objective(block, Max, net profit + value of stored water)

ééénstraint(block,production[s = model.scenarios, t = model.hours],
H[s,t] == sum(params.u[p,ql*Q[s,p,q,t]
for p = model.plants, q = model.segments)
)

end
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Initial Approach - Issues

A lot of code repetition

No clearcut way to calculate stochastic measures: EVPI, VSS

The model creation is somewhat inflexible
Parallel L-shaped using the Distributed module in Julia...
..but StructJuMP relies on MPI

Creating a new hydromodel involves reimplementing a new type
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New Approach

e StochasticPrograms.jl

o Flexible model creation
o Parallel capabilities based on the Distributed module
o Stochastic programming constructs

e HydroModels.jl

o Model creation focused on data and optimization formulation
o Efficient model reinitialization
o Predefined models

e Short-term production planning
e Optimal orders on the day-ahead market
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StochasticPrograms.jl - Simple Example

minimize 100z, + 150z, 4+ E_[Q(z;, 7y, €)]

zy,T5€R
st. oz + 12, <120
z > 40
T9 > 20

where
Qay,25,§) = min @ (&) + ()Y,

Y1:Y2

s.t. 6y, + 10y, <60z,
8y, + 5y, < 80,
0<y <d(f)

0 <y, < (¢
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StochasticPrograms.jl - Simple Example

sp =

StochasticProgram(solver=ClpSolver())

@first stage sp = begin

end

@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

@second stage sp = begin

end

@decision X1 X2

s = scenario

@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*y1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi1 + 5*y2 <= 80*x2)
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sp =

StochasticProgram(solver=ClpSolver())

@first stage sp = begin

end

@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

@second stage sp = begin

end
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@variable(model, 0 <= y1 <= s.d[1])
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@constraint(model, 8*yi + 5*y2> <= 80*x2)

Creates a generator function for the second stage model
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StochasticPrograms.jl - Simple Example

sp = StochasticProgram(solver=ClpSolver())

@first stage sp = begin
@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

end

@second stage sp = begin
@decision X1 X2
s = scenario
@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*y1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi1 + 5*y2 <= 80*x2)

end

Explicitly denote that some variables originate from the first stage
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StochasticPrograms.jl - Simple Example

sp =

StochasticProgram(solver=ClpSolver())

@first stage sp = begin

end

@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

@second stage sp = begin

end

@decision X1 X2

s = scenario

@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*y1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi1 + 5*y2 <= 80*x2)

Injection point for scenario data
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StochasticPrograms.jl - Simple Example

struct SimpleScenario <: AbstractScenarioData
p::Float64
d::Vector{Float64}
q::Vector{Float64}

end

StochasticPrograms.probability(s::SimpleScenario) = s.p
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StochasticPrograms.jl - Simple Example

struct SimpleScenario <: AbstractScenarioData
p::Float64
d::Vector{Float64}
q::Vector{Float64}

end

StochasticPrograms.probability(s::SimpleScenario) = s.p

Add two scenarios to the stochastic program

sl SimpleScenario(0.4,[500.0,100],[-24.0,-28])

s2

SimpleScenario(0.6,[300.0,300],[-28.0,-32])

append! (sp,[s1,s2])
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StochasticPrograms.jl - Simple Example

print(sp)
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StochasticPrograms.jl - Simple Example

print(sp)

First-stage

Min 100 x1 + 150 x2
Subject to

X1 + X2 = 120

X1 = 40

X2 = 20

Second-stage

Subproblem 1:

Min -24 y1 - 28 y2
Subject to

6 y1 + 10 y2 - 60 x1 =0

8y1 +5y2 - 80 x2=0
0 =y = 500
0 =y2 = 100

Subproblem 2:

Min -28 y1 - 32 y2
Subject to

6 y1 + 10 y2 - 60 x1 = 0

8 y:r +5y2 - 80 x2=0
0 = y: = 300
0 = vy2 = 300
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Implementation Details

Deferred model creation

e JuMP models are not created instantly

e Model definitions are stored in generating lambda functions

e These model recipes are then used as building blocks

Data injection

e The generating functions contain certain placeholders keywords

e Upon model creation, the keywords contain the required data fields

Implications

e Flexible model creation and reformulation
e Efficient parallel implementation
e Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25



StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™

st. Az =10
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StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™

st. Ax =19
dep = DEP(sp)
Minimization problem with:
* 5 linear constraints

* 6 variables
Solver is ClpMathProg
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StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™

st. Az=1b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints

* 6 variables

Solver is ClpMathProg

e First stage generator
e Second stage generator on all available scenarios

e Connections possible due to the @decision annotation
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StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E [Q(z,£(w))]

zeR™

st. Az=1b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints

* 6 variables

Solver is ClpMathProg

First stage generator

Second stage generator on all available scenarios

Connections possible due to the @decision annotation

DEP model is cached internally until new scenarios are added
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StochasticPrograms.jl - Deterministically Equivalent Model

print(dep)
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StochasticPrograms.jl - Deterministically Equivalent Model

print(dep)

Min 100 x1 + 150 x2 - 9.6 y1 1 - 11.2 y2 1 - 16.8 y1_2 - 19.2 y2 2
Subject to

X1 + X2 = 120

6 y1 1+ 10 y21- 60 x1 =0

8y1 1+5y21-280x2=20

6 y1 2+ 10 y2 2 - 60 x1 =0

8y:1 2 +5y22-80x2=0

500
100
300
300

ININ A IA
<
~N
=
ININ TN IA
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StochasticPrograms.jl - Solving Models
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StochasticPrograms.jl - Solving Models

e Extended form

solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83
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StochasticPrograms.jl - Solving Models

e Extended form

solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

e |-shaped
solve(sp,solver=LShapedSolver(:1ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)

Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal
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StochasticPrograms.jl - Solving Models

e Extended form

solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

e |-shaped
solve(sp,solver=LShapedSolver(:1ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)

Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal

e Convenience function (Value of the recourse problem)

VRP(sp,solver=ClpSolver())
-855.83
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StochasticPrograms.jl - Wait-And-See Models

minimize Tz + Q(z,&)
z€R™

st. Az =10
z >0

for given E
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StochasticPrograms.jl - Wait-And-See Models

minimize ¢’z + Q(z,£)
z€R™

st. Az =10

for given E

ws = WS(sp,sl)
Minimization problem with:
* 3 linear constraints
* 4 variables
Solver is ClpMathProg
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StochasticPrograms.jl - Wait-And-See Models

minimize ¢’z + Q(z,£)
z€R™

st. Az =10

for given E

ws = WS(sp,sl)
Minimization problem with:
* 3 linear constraints
* 4 variables
Solver is ClpMathProg

e First stage generator

e Second stage generator on the given scenario
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StochasticPrograms.jl - Wait-And-See Models

print(ws)
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StochasticPrograms.jl - Wait-And-See Models

print(ws)

Min 100 x1 + 150 x2 - 24 y1 - 28 y2
Subject to

X1 + X2 = 120

6 y1 + 10 y2 - 60 x1 =0

8 y1 +5y2 - 80 x2 =0

X1 = 40
X2 = 20
0 =y = 500
0 = y2 = 100
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StochasticPrograms.jl - Expected Value Problems

minimize ¢’z + Q(z, &)
zeR™

st. Az =25>
>0

where

§ = [§(w)]
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StochasticPrograms.jl - Expected Value Problems

minimize ¢’z + Q(z, &)
zeR™

st. Az =25>
>0

where

£ =E,[(w)]
Must be possible to take expectation over scenarios

function expected(scenarios::Vector{SimpleScenario})
return SimpleScenario(sum([s.p for s in scenariosl]),
sum([s.p*s.d for s in scenarios]),
sum([s.p*s.q for s in scenarios]))
end
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StochasticPrograms.jl - Expected Value Problems

evp = EVP(sp)

Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

print(evp)
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StochasticPrograms.jl - Expected Value Problems

evp = EVP(sp)

Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

print(evp)

Min 100 x1 + 150 x2 - 26.4 y1 - 30.4 vy
Subject to

X1 + X2 = 120

6 y1 + 10 y2 - 60 x1 =0

8 y1 +5y2 - 80 x2 =0
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StochasticPrograms.jl - Decision Evaulation

T+ E,[QF,§(w))]
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2+ E,[Q(3, {(w))]
% = [50,501;

eval decision(sp,% ,solver=ClpSolver())
356.0

e Create first stage variables using generator
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StochasticPrograms.jl - Decision Evaulation

TA ~

¢’z +E,[Q(7,{(w))]
X = [50,50];
eval decision(sp,% ,solver=ClpSolver())
356.0
e Create first stage variables using generator
e Fixate them to the given values
e Generate the second stage problems

e Again, linking handled through @decision

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25



StochasticPrograms.jl - Decision Evaulation

T+ E,[QF,§(w))]

X = [50,50];

eval decision(sp,% ,solver=ClpSolver())
356.0

e Create first stage variables using generator

Fixate them to the given values

Generate the second stage problems

Again, linking handled through @decision

Solve resulting JuUMP model
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StochasticPrograms.jl - Stochastic Measures

e Expected value of using the expected solution (EEV)

EEV(sp,solver=ClpSolver())
-568.92
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StochasticPrograms.jl - Stochastic Measures

e Expected value of using the expected solution (EEV)

EEV(sp,solver=ClpSolver())
-568.92

e Expected wait-and-see solution (EWS)

EWS(sp,solver=ClpSolver())
-1518.75

e Expected value of perfect information (EVPI = VRP - EWS)
EVPI(sp,solver=ClpSolver())
662.92

* Value of the stochastic solution (VSS = EEV - VRP)

VSS(sp,solver=ClpSolver())
286.92

Many of the required calculations are embarassingly parallel
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LShapedSolvers.jl

L-shaped algorithm variants

L-shaped [Van Slyke,Wets]
Multicut L-shaped [Birge,Louveaux]

Regularized decomposition [Ruszczyniski]
Trust-region L-shaped [Linderoth,Wright]
Level-set [Fabian,Szoke]
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LShapedSolvers.jl

e L-shaped variants
1. L-shaped with multiple cuts (default): LShapedSolver(:1s)
2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)
4. L-shaped with level sets: LShapedSolver(:1lv)
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e L-shaped variants

1. L-shaped with multiple cuts (default): LShapedSolver(:1s)

2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)

4. L-shaped with level sets: LShapedSolver(:1lv)

e Distributed L-shaped variants

1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
2. Distributed regularized L-shaped: LShapedSolver(:drd)

3. Distributed L-shaped with trust region: LShapedSolver(:dtr)
4. Distributed L-shaped with level sets: LShapedSolver(:dlv)

e Trait based implementation. Every solver is a combination of a:

o Regularization trait
o Parallelization trait

e Subproblems are solved using MathProgBase solvers
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e Also based on deferred model creation and data injection
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e Also based on deferred model creation and data injection
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Define optimization problem
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HydroModels.jl

e Also based on deferred model creation and data injection

e The user creates a model recipe using the enydronodet macro
Creating a Planning Problem

e Define model indices
e Define model data
e Define modelindices(::AbstractHydroModelData, ::Horizon, args...)

e Define optimization problem
Data injection keywords

e horizon: the time horizon if the model
e jndices: structure with model indices

e data: structure with model data
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HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours: :Vector{Int}
plants: :Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata: :HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
A::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon: :Horizon)
hours = collect(1l:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)
error("No plants in data")
end
return SimpleShortTermIndices(hours, plants)
end

Define the required model indices
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hydrodata: :HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
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end

function modelindices(data::SimpleShortTermData,horizon: :Horizon)
hours = collect(1l:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)
error("No plants in data")
end
return SimpleShortTermIndices(hours, plants)
end

Define data structure that should be available in the model
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HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours: :Vector{Int}
plants::Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata: :HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
A::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon: :Horizon)
hours = collect(1l:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)
error("No plants in data")
end
return SimpleShortTermIndices (hours, plants)
end

Create model indices based on given data and time horizon
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HydroModels.jl - Simple Example

@hydromodel Deterministic SimpleShortTerm = begin

hours = indices.hours
plants = indices.plants

Hdéta = data.hydrodata
D = data.D
A = data.A

@variable(model, H[t = hours] >= 0) # Production each hour

@expression(model, value of stored water,
0.98*mean(A) *sum(M[p,24]*sum(hdata[i].pu[1]
for i = hdata.Qd[p])
for p = plants))
@objective(model, Max, net profit + value of stored water)

ééénstraint(model, load constraint[t = hours],
H[t] + Hp[t] - Hs[t] == D[t])

end
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HydroModels.jl - Simple Example

simple model = SimpleShortTermModel(Day(),data)
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Not yet planned
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HydroModels.jl - Simple Example

simple model = SimpleShortTermModel(Day(),data)
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Not yet planned

plan! (simple model, optimsolver = CbcSolver())
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Optimally planned
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HydroModels.jl - Simple Example

reinitialize! (simple_model,Week(),data)
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 168 hour horizon (1 week)

Not yet planned
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HydroModels.jl - Day-Ahead Model

e HydroModels.jl model implemented using StochasticPrograms.jl
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e Small benchmark
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o 20 Price curve scenarios from the NordPool market
o 748042 variables and 376700 constraints in the extended form
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HydroModels.jl - Day-Ahead Model

e HydroModels.jl model implemented using StochasticPrograms.jl

e Determine optimal order strategies on day-ahead electricity markets
e Small benchmark

o 257 Swedish power stations
o 20 Price curve scenarios from the NordPool market
o 748042 variables and 376700 constraints in the extended form

o Results

o Gurobi on extended form: 58.2 seconds (4 9.2s for DEP generation)
o Distributed L-shaped: 31.5 seconds

o Distributed L-shaped with tuned trust-region: 26.7 seconds

Martin Biel (KTH) Stochastic Programming for Hydropower 23 /25



Final Remarks - Outlook on Future Work

e StochasticPrograms.jl

o Sampling
o Multistage models
o Progressive hedging solver
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Final Remarks - Outlook on Future Work

e StochasticPrograms.jl

o Sampling
o Multistage models
o Progressive hedging solver

e HydroModels.jl
o Implement more models of hydropower operations
e |LShapedSolvers.jl

o Algorithmic improvements
o Hardware acceleration
o Support integer problems
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Final Remarks - Summary

e Stochastic programming for hydropower operations in Julia

o StochasticPrograms.jl
o LShapedSolvers.jl
o HydroModels.jl
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Final Remarks - Summary

e Stochastic programming for hydropower operations in Julia

o StochasticPrograms.jl
o LShapedSolvers.jl
o HydroModels.jl

e Software innovations

o Deferred model creation
o Data injection

e Disclaimer: Not updated for MathOptlInterface and JuMP 0.19
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Final Remarks - Summary

Stochastic programming for hydropower operations in Julia

o StochasticPrograms.jl
o LShapedSolvers.jl
o HydroModels.jl

Software innovations

o Deferred model creation
o Data injection

Disclaimer: Not updated for MathOptInterface and JuMP 0.19

All packages are available on Github:

o https://github.com/martinbiel /StochasticPrograms.j|
o https://github.com/martinbiel /LShapedSolvers.jl
o https://github.com/martinbiel /HydroModels.jl

Feedback appreciated!
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