Stochastic Programming for Hydropower
Operations

Modeling and Algorithms

Martin Biel

KTH - Royal Institute of Technology
JUNE 28, 2018

Motivation

e Simulation of hydro power operations — Decision-support

Martin Biel (KTH) Stochastic Programming for Hydropower 2 /25

Motivation

e Simulation of hydro power operations — Decision-support

o Price forecasts
o lIrregular power production: solar and wind
o Nuclear power phase-out

Martin Biel (KTH) Stochastic Programming for Hydropower 2/25

Motivation

e Simulation of hydro power operations — Decision-support

o Price forecasts
o lIrregular power production: solar and wind
o Nuclear power phase-out

e Common: Trade-off between accuracy and computation time

Martin Biel (KTH) Stochastic Programming for Hydropower 2/25

Motivation

e Simulation of hydro power operations — Decision-support

o Price forecasts

o lIrregular power production: solar and wind
o Nuclear power phase-out

e Common: Trade-off between accuracy and computation time

e Aim: Provide reliable decision-support in real time

Martin Biel (KTH) Stochastic Programming for Hydropower 2/25

Motivation

e Simulation of hydro power operations — Decision-support

o Price forecasts

o lIrregular power production: solar and wind
o Nuclear power phase-out

e Common: Trade-off between accuracy and computation time
e Aim: Provide reliable decision-support in real time

o Accurate models: Optimal model reductions

Martin Biel (KTH) Stochastic Programming for Hydropower 2/25

Motivation

e Simulation of hydro power operations — Decision-support

o Price forecasts

o lIrregular power production: solar and wind
o Nuclear power phase-out

e Common: Trade-off between accuracy and computation time
e Aim: Provide reliable decision-support in real time

o Accurate models: Optimal model reductions
o Fast computations: Scalable algorithms on commodity hardware

Martin Biel (KTH) Stochastic Programming for Hydropower 2/25

Motivation

e Simulation of hydro power operations — Decision-support

o Price forecasts

o lIrregular power production: solar and wind
o Nuclear power phase-out

e Common: Trade-off between accuracy and computation time
e Aim: Provide reliable decision-support in real time

o Accurate models: Optimal model reductions
o Fast computations: Scalable algorithms on commodity hardware

=88 + [Q@B*%

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2/25

Motivation

e Simulation of hydro power operations — Decision-support

o Price forecasts

o lIrregular power production: solar and wind
o Nuclear power phase-out

e Common: Trade-off between accuracy and computation time
e Aim: Provide reliable decision-support in real time

o Accurate models: Optimal model reductions
o Fast computations: Scalable algorithms on commodity hardware

=88 + [Q:{j*%

Manageable models Scalable algorithms

Martin Biel (KTH) Stochastic Programming for Hydropower 2/25

Motivation

Stochastic programming for hydro power operations

e Optimal orders on the day-ahead market
e Maintenance scheduling
e Long-term investments

e Wind/solar uncertainties

Martin Biel (KTH) Stochastic Programming for Hydropower 3/25

Motivation

Stochastic programming for hydro power operations

e Optimal orders on the day-ahead market
e Maintenance scheduling
e Long-term investments

e Wind/solar uncertainties

Advantages

e Multiple scenarios — More accurate models

e Parallel decomposition — Faster computations

Martin Biel (KTH) Stochastic Programming for Hydropower 3/25

Contribution

Julia modules

e StochasticPrograms.jl
e | ShapedSolvers.jl
e HydroModels.jl

Martin Biel (KTH) Stochastic Programming for Hydropower 4/25

Contribution

Julia modules

e StochasticPrograms.jl
e | ShapedSolvers.jl
e HydroModels.jl

Software Innovations

e Deferred model creation

e Data injection

Martin Biel (KTH) Stochastic Programming for Hydropower 4/25

Content

e Initial approach

Martin Biel (KTH) Stochastic Programming for Hydropower

Content

e Initial approach

e StochasticProgramming.jl

Martin Biel (KTH) Stochastic Programming for Hydropower

Content

e Initial approach
e StochasticProgramming.jl

e LShapedSolvers.jl

Martin Biel (KTH) Stochastic Programming for Hydropower

Content

Initial approach

StochasticProgramming.jl

LShapedSolvers.jl
HydroModels.jl

Martin Biel (KTH) Stochastic Programming for Hydropower

Content

Initial approach

StochasticProgramming.jl

LShapedSolvers.jl
HydroModels.jl

Final remarks

Martin Biel (KTH) Stochastic Programming for Hydropower 5/25

Initial Approach

e HydroModel

o Data
o JuMP model

Martin Biel (KTH) Stochastic Programming for Hydropower

Initial Approach

e HydroModel

o Data
o JuMP model

e Julia struct for each model: ShortTerm, DayAhead

Martin Biel (KTH) Stochastic Programming for Hydropower

Initial Approach

e HydroModel
o Data
o JuMP model
e Julia struct for each model: ShortTerm, DayAhead

e Parallel decomposition: L-shaped on StructJuMP.jl models

Martin Biel (KTH) Stochastic Programming for Hydropower 6 /25

Initial Approach

HydroModel

o Data
o JuMP model

Julia struct for each model: ShortTerm, DayAhead
Parallel decomposition: L-shaped on StructJuMP.jl models

Performance: Solve extended form using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 6 /25

FKTHR

b e

L

Initial Approach

function define_structjump_problem(model::DayAheadModel)
model.internalmodels[:structured] = StructuredModel(num scenarios = numscenarios(model))
params = model.modeldata

é&ariable(internalmodel,xtii[t = model.hours] >= 0)

fér s in 1l:numscenarios(model)
block = StructuredModel(parent = internalmodel, id = s)

éQériable(block,O[p = model.plants, q = model.segments, t = model.hours],
lowerbound = 0,upperbound = params.Q [(p,q)])
@variable(block,S[p = model.plants, t = model.hours] >= 0)

@expression(block,value_of_stored water,
params.A_f*sum(M[p,hours(model.horizon)]*sum(params.p[i, 1]
for i = params.Qd[p])
for p = model.plants))
Define objective
@objective(block, Max, net_profit + value of_stored water)

ééénstraint(block,production[s = model.scenarios, t = model.hours],
H[s,t] == sum(params.ulp,ql*Q[s,p,q,t]
for p = model.plants, q = model.segments)
)

ot
end

Martin Biel (KTH) Stochastic Programming for Hydropower

FKTHR

g, v @

Initial Approach S

function define_dep_problem(model: :DayAheadModel)
model.internalmodels[:dep] = Model()
params = model.modeldata

é&ériable(internalmodel,xtii[t = model.hours] >= 0)

éQériable(block,O[s = model.scenarios, p = model.plants, t = model.hours],
lowerbound = 0, upperbound = params.Q [(p,q)1)
@variable(block,S[s = model.scenarios, p = model.plants, t = model.hours] >= 0)

@expression(block,value_of_stored_water,
sum(scenarios[s].m*params.A_f*sum(M[s,p]l*sum(params.p[i, 1]
for i = params.Qd[p])
for p = model.plants)
for s = model.scenarios))
Define objective
@objective(block, Max, net profit + value of stored water)

ééénstraint(block,production[s = model.scenarios, t = model.hours],
H[s,t] == sum(params.u[p,ql*Q[s,p,q,t]
for p = model.plants, q = model.segments)
)

end

Martin Biel (KTH) Stochastic Programming for Hydropower

Initial Approach - Issues

e A lot of code repetition

Martin Biel (KTH) Stochastic Programming for Hydropower

Initial Approach - Issues

e A lot of code repetition

e No clearcut way to calculate stochastic measures: EVPI, VSS

Martin Biel (KTH) Stochastic Programming for Hydropower 7/25

Initial Approach - Issues

e A lot of code repetition

e No clearcut way to calculate stochastic measures: EVPI, VSS
e The model creation is somewhat inflexible

Martin Biel (KTH) Stochastic Programming for Hydropower 7/25

Initial Approach - Issues

A lot of code repetition
No clearcut way to calculate stochastic measures: EVPI, VSS
The model creation is somewhat inflexible

Parallel L-shaped using the Distributed module in Julia..

Martin Biel (KTH) Stochastic Programming for Hydropower 7/25

Initial Approach - Issues

A lot of code repetition

No clearcut way to calculate stochastic measures: EVPI, VSS

The model creation is somewhat inflexible
Parallel L-shaped using the Distributed module in Julia...
..but StructJuMP relies on MPI

Martin Biel (KTH) Stochastic Programming for Hydropower 7/25

Initial Approach - Issues

A lot of code repetition

No clearcut way to calculate stochastic measures: EVPI, VSS

The model creation is somewhat inflexible
Parallel L-shaped using the Distributed module in Julia...
..but StructJuMP relies on MPI

Creating a new hydromodel involves reimplementing a new type

Martin Biel (KTH) Stochastic Programming for Hydropower 7/25

New Approach

e StochasticPrograms.jl

e HydroModels.jl

Martin Biel (KTH) Stochastic Programming for Hydropower

New Approach

e StochasticPrograms.jl

o Flexible model creation

e HydroModels.jl

Martin Biel (KTH) Stochastic Programming for Hydropower

New Approach

e StochasticPrograms.jl
o Flexible model creation

o Parallel capabilities based on the Distributed module

e HydroModels.jl

Martin Biel (KTH) Stochastic Programming for Hydropower)

New Approach

e StochasticPrograms.jl

o Flexible model creation
o Parallel capabilities based on the Distributed module
o Stochastic programming constructs

e HydroModels.jl

Martin Biel (KTH) Stochastic Programming for Hydropower)

New Approach

e StochasticPrograms.jl

o Flexible model creation
o Parallel capabilities based on the Distributed module
o Stochastic programming constructs

e HydroModels.jl

o Model creation focused on data and optimization formulation

Martin Biel (KTH) Stochastic Programming for Hydropower)

New Approach

e StochasticPrograms.jl

o Flexible model creation
o Parallel capabilities based on the Distributed module
o Stochastic programming constructs

e HydroModels.jl

o Model creation focused on data and optimization formulation
o Efficient model reinitialization

Martin Biel (KTH) Stochastic Programming for Hydropower)

New Approach

e StochasticPrograms.jl

o Flexible model creation
o Parallel capabilities based on the Distributed module
o Stochastic programming constructs

e HydroModels.jl

o Model creation focused on data and optimization formulation
o Efficient model reinitialization
o Predefined models

e Short-term production planning
e Optimal orders on the day-ahead market

Martin Biel (KTH) Stochastic Programming for Hydropower)

StochasticPrograms.jl - Simple Example

minimize 100z, + 150z, 4+ E_[Q(z;, 7y, €)]

zy,T5€R
st. oz + 12, <120
z > 40
T9 > 20

where
Qay,25,§) = min @ (&) + ()Y,

Y1:Y2

s.t. 6y, + 10y, <60z,
8y, + 5y, < 80,
0<y <d(f)

0 <y, < (¢

Martin Biel (KTH) Stochastic Programming for Hydropower 9/25

StochasticPrograms.jl - Simple Example

sp =

StochasticProgram(solver=ClpSolver())

@first stage sp = begin

end

@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

@second stage sp = begin

end

@decision X1 X2

s = scenario

@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*y1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi1 + 5*y2 <= 80*x2)

Martin Biel (KTH) Stochastic Programming for Hydropower

10 /25

StochasticPrograms.jl - Simple Example

sp =

StochasticProgram(solver=ClpSolver())

@first stage sp = begin

end

@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+xz2 <= 120)

@second stage sp = begin

end

@decision X1 X2

s = scenario

@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*y1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi1 + 5*y2 <= 80*x2)

Creates a generator function for the first stage model

Martin Biel (KTH) Stochastic Programming for Hydropower

10 /25

StochasticPrograms.jl - Simple Example

sp =

StochasticProgram(solver=ClpSolver())

@first stage sp = begin

end

@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

@second stage sp = begin

end

@decision X1 X2

s = scenario

@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*yi1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi + 5*y2> <= 80*x2)

Creates a generator function for the second stage model

Martin Biel (KTH) Stochastic Programming for Hydropower

10 /25

StochasticPrograms.jl - Simple Example

sp = StochasticProgram(solver=ClpSolver())

@first stage sp = begin
@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

end

@second stage sp = begin
@decision X1 X2
s = scenario
@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*y1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi1 + 5*y2 <= 80*x2)

end

Explicitly denote that some variables originate from the first stage

Martin Biel (KTH) Stochastic Programming for Hydropower 10 / 25

StochasticPrograms.jl - Simple Example

sp =

StochasticProgram(solver=ClpSolver())

@first stage sp = begin

end

@variable(model, xi1 >= 40)
@variable(model, x2 >= 20)
@objective(model, Min, 100*x1 + 150*x2)
@constraint(model, Xxi+x2 <= 120)

@second stage sp = begin

end

@decision X1 X2

s = scenario

@variable(model, 0 <= y1 <= s.d[1])
@variable(model, 0 <= y2 <= s.d[2])
@objective(model, Min, s.q[l]l*y: + s.q[2]*y2)
@constraint(model, 6*y1 + 10*y2 <= 60%*x1)
@constraint(model, 8*yi1 + 5*y2 <= 80*x2)

Injection point for scenario data

Martin Biel (KTH) Stochastic Programming for Hydropower

10 /25

StochasticPrograms.jl - Simple Example

struct SimpleScenario <: AbstractScenarioData
p::Float64
d::Vector{Float64}
q::Vector{Float64}

end

StochasticPrograms.probability(s::SimpleScenario) = s.p

Martin Biel (KTH) Stochastic Programming for Hydropower 11 /25

StochasticPrograms.jl - Simple Example

struct SimpleScenario <: AbstractScenarioData
p::Float64
d::Vector{Float64}
q::Vector{Float64}

end

StochasticPrograms.probability(s::SimpleScenario) = s.p

Add two scenarios to the stochastic program

sl SimpleScenario(0.4,[500.0,100],[-24.0,-28])

s2

SimpleScenario(0.6,[300.0,300],[-28.0,-32])

append! (sp,[s1,s2])

Martin Biel (KTH) Stochastic Programming for Hydropower 11 /25

StochasticPrograms.jl - Simple Example

print(sp)

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Simple Example

print(sp)

First-stage

Min 100 x1 + 150 x2
Subject to

X1 + X2 = 120

X1 = 40

X2 = 20

Second-stage

Subproblem 1:

Min -24 y1 - 28 y2
Subject to

6 y1 + 10 y2 - 60 x1 =0

8y1 +5y2 - 80 x2=0
0 =y = 500
0 =y2 = 100

Subproblem 2:

Min -28 y1 - 32 y2
Subject to

6 y1 + 10 y2 - 60 x1 = 0

8 y:r +5y2 - 80 x2=0
0 = y: = 300
0 = vy2 = 300

Martin Biel (KTH) Stochastic Programming for Hydropower

Implementation Details

Deferred model creation

Martin Biel (KTH) Stochastic Programming for Hydropower

Implementation Details

Deferred model creation

e JuMP models are not created instantly

Martin Biel (KTH) Stochastic Programming for Hydropower

Implementation Details

Deferred model creation

e JuMP models are not created instantly

e Model definitions are stored in generating lambda functions

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly
e Model definitions are stored in generating lambda functions
e These model recipes are then used as building blocks

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly

e Model definitions are stored in generating lambda functions
e These model recipes are then used as building blocks
Data injection

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly
e Model definitions are stored in generating lambda functions
e These model recipes are then used as building blocks

Data injection

e The generating functions contain certain placeholders keywords

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly
e Model definitions are stored in generating lambda functions
e These model recipes are then used as building blocks

Data injection

e The generating functions contain certain placeholders keywords

e Upon model creation, the keywords contain the required data fields

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly
e Model definitions are stored in generating lambda functions
e These model recipes are then used as building blocks

Data injection

e The generating functions contain certain placeholders keywords

e Upon model creation, the keywords contain the required data fields

Implications

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly
e Model definitions are stored in generating lambda functions
e These model recipes are then used as building blocks

Data injection

e The generating functions contain certain placeholders keywords

e Upon model creation, the keywords contain the required data fields

Implications

e Flexible model creation and reformulation

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly
e Model definitions are stored in generating lambda functions
e These model recipes are then used as building blocks

Data injection

e The generating functions contain certain placeholders keywords

e Upon model creation, the keywords contain the required data fields

Implications

e Flexible model creation and reformulation
e Efficient parallel implementation

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

Implementation Details

Deferred model creation

e JuMP models are not created instantly

e Model definitions are stored in generating lambda functions

e These model recipes are then used as building blocks

Data injection

e The generating functions contain certain placeholders keywords

e Upon model creation, the keywords contain the required data fields

Implications

e Flexible model creation and reformulation
e Efficient parallel implementation
e Versatility

Martin Biel (KTH) Stochastic Programming for Hydropower 12 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™

st. Az =10

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™

st. Ax =19
dep = DEP(sp)
Minimization problem with:
* 5 linear constraints

* 6 variables
Solver is ClpMathProg

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™
st. Ax =19
dep = DEP(sp)
Minimization problem with:
* 5 linear constraints

* 6 variables
Solver is ClpMathProg

e First stage generator

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™

st. Ax =19
dep = DEP(sp)
Minimization problem with:
* 5 linear constraints

* 6 variables
Solver is ClpMathProg

e First stage generator

e Second stage generator on all available scenarios

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E_[Q(z, £(w))]

zeR™

st. Az=1b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints

* 6 variables

Solver is ClpMathProg

e First stage generator
e Second stage generator on all available scenarios

e Connections possible due to the @decision annotation

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

minimize ¢’z + E [Q(z,£(w))]

zeR™

st. Az=1b
dep = DEP(sp)

Minimization problem with:
* 5 linear constraints

* 6 variables

Solver is ClpMathProg

First stage generator

Second stage generator on all available scenarios

Connections possible due to the @decision annotation

DEP model is cached internally until new scenarios are added

Martin Biel (KTH) Stochastic Programming for Hydropower 13 / 25

StochasticPrograms.jl - Deterministically Equivalent Model

print(dep)

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Deterministically Equivalent Model

print(dep)

Min 100 x1 + 150 x2 - 9.6 y1 1 - 11.2 y2 1 - 16.8 y1_2 - 19.2 y2 2
Subject to

X1 + X2 = 120

6 y1 1+ 10 y21- 60 x1 =0

8y1 1+5y21-280x2=20

6 y1 2+ 10 y2 2 - 60 x1 =0

8y:1 2 +5y22-80x2=0

500
100
300
300

ININ A IA
<
~N
=
ININ TN IA

Martin Biel (KTH) Stochastic Programming for Hydropower 13 /25

StochasticPrograms.jl - Solving Models

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Solving Models

e Extended form

solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

Martin Biel (KTH) Stochastic Programming for Hydropower 14 / 25

StochasticPrograms.jl - Solving Models

e Extended form

solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

e |-shaped
solve(sp,solver=LShapedSolver(:1ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)

Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal

Martin Biel (KTH) Stochastic Programming for Hydropower 14 / 25

StochasticPrograms.jl - Solving Models

e Extended form

solve(sp,solver=ClpSolver())
:Optimal

getobjectivevalue(sp)
-855.83

e |-shaped
solve(sp,solver=LShapedSolver(:1ls,ClpSolver()))

L-Shaped Gap Time: 0:00:01 (4 iterations)

Objective: -855.8333333333358
Gap: 2.1229209144670507e-15
Number of cuts: 5

:Optimal

e Convenience function (Value of the recourse problem)

VRP(sp,solver=ClpSolver())
-855.83

Martin Biel (KTH) Stochastic Programming for Hydropower 14 / 25

StochasticPrograms.jl - Wait-And-See Models

minimize Tz + Q(z,&)
z€R™

st. Az =10
z >0

for given E

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Wait-And-See Models

minimize ¢’z + Q(z,£)
z€R™

st. Az =10

for given E

ws = WS(sp,sl)
Minimization problem with:
* 3 linear constraints
* 4 variables
Solver is ClpMathProg

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Wait-And-See Models

minimize ¢’z + Q(z,£)
z€R™

st. Az =10

for given E

ws = WS(sp,sl)
Minimization problem with:
* 3 linear constraints
* 4 variables
Solver is ClpMathProg

e First stage generator

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Wait-And-See Models

minimize ¢’z + Q(z,£)
z€R™

st. Az =10

for given E

ws = WS(sp,sl)
Minimization problem with:
* 3 linear constraints
* 4 variables
Solver is ClpMathProg

e First stage generator

e Second stage generator on the given scenario

Martin Biel (KTH) Stochastic Programming for Hydropower 15 / 25

StochasticPrograms.jl - Wait-And-See Models

print(ws)

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Wait-And-See Models

print(ws)

Min 100 x1 + 150 x2 - 24 y1 - 28 y2
Subject to

X1 + X2 = 120

6 y1 + 10 y2 - 60 x1 =0

8 y1 +5y2 - 80 x2 =0

X1 = 40
X2 = 20
0 =y = 500
0 = y2 = 100

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Expected Value Problems

minimize ¢’z + Q(z, &)
zeR™

st. Az =25>
>0

where

§ = [§(w)]

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Expected Value Problems

minimize ¢’z + Q(z, &)
zeR™

st. Az =25>
>0

where

£ =E,[(w)]
Must be possible to take expectation over scenarios

function expected(scenarios::Vector{SimpleScenario})
return SimpleScenario(sum([s.p for s in scenariosl]),
sum([s.p*s.d for s in scenarios]),
sum([s.p*s.q for s in scenarios]))
end

Martin Biel (KTH) Stochastic Programming for Hydropower 16 / 25

StochasticPrograms.jl - Expected Value Problems

evp = EVP(sp)

Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

print(evp)

Martin Biel (KTH) Stochastic Programming for Hydropower 16 / 25

StochasticPrograms.jl - Expected Value Problems

evp = EVP(sp)

Minimization problem with:
* 3 linear constraints
* 4 variables

Solver is ClpMathProg

print(evp)

Min 100 x1 + 150 x2 - 26.4 y1 - 30.4 vy
Subject to

X1 + X2 = 120

6 y1 + 10 y2 - 60 x1 =0

8 y1 +5y2 - 80 x2 =0

Martin Biel (KTH) Stochastic Programming for Hydropower 16 / 25

StochasticPrograms.jl - Decision Evaulation

T+ E,[QF,§(w))]

Martin Biel (KTH) Stochastic Programming for Hydropower

StochasticPrograms.jl - Decision Evaulation

2+ E,[Q(3, {(w))]
% = [50,501;

eval decision(sp,% ,solver=ClpSolver())
356.0

e Create first stage variables using generator

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

2+ E,[Q(3, {(w))]
% = [50,501;

eval decision(sp,% ,solver=ClpSolver())
356.0

e Create first stage variables using generator

e Fixate them to the given values

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

2+ E,[Q(3, {(w))]
% = [50,501;

eval decision(sp,% ,solver=ClpSolver())
356.0

e Create first stage variables using generator
e Fixate them to the given values

e Generate the second stage problems

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

TA ~

¢’z +E,[Q(7,{(w))]
X = [50,50];
eval decision(sp,% ,solver=ClpSolver())
356.0
e Create first stage variables using generator
e Fixate them to the given values
e Generate the second stage problems

e Again, linking handled through @decision

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Decision Evaulation

T+ E,[QF,§(w))]

X = [50,50];

eval decision(sp,% ,solver=ClpSolver())
356.0

e Create first stage variables using generator

Fixate them to the given values

Generate the second stage problems

Again, linking handled through @decision

Solve resulting JuUMP model

Martin Biel (KTH) Stochastic Programming for Hydropower 17 / 25

StochasticPrograms.jl - Stochastic Measures

e Expected value of using the expected solution (EEV)

EEV(sp,solver=ClpSolver())
-568.92

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

e Expected value of using the expected solution (EEV)

EEV(sp,solver=ClpSolver())
-568.92

e Expected wait-and-see solution (EWS)

EWS(sp,solver=ClpSolver())
-1518.75

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

e Expected value of using the expected solution (EEV)

EEV(sp,solver=ClpSolver())
-568.92

e Expected wait-and-see solution (EWS)

EWS(sp,solver=ClpSolver())
-1518.75

e Expected value of perfect information (EVPI = VRP - EWS)

EVPI(sp,solver=ClpSolver())
662.92

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

Expected value of using the expected solution (EEV)

EEV(sp,solver=ClpSolver())
-568.92

Expected wait-and-see solution (EWS)

EWS(sp,solver=ClpSolver())
-1518.75

Expected value of perfect information (EVPI = VRP - EWS)

EVPI(sp,solver=ClpSolver())
662.92

Value of the stochastic solution (VSS = EEV - VRP)

VSS(sp,solver=ClpSolver())
286.92

Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

StochasticPrograms.jl - Stochastic Measures

e Expected value of using the expected solution (EEV)

EEV(sp,solver=ClpSolver())
-568.92

e Expected wait-and-see solution (EWS)

EWS(sp,solver=ClpSolver())
-1518.75

e Expected value of perfect information (EVPI = VRP - EWS)
EVPI(sp,solver=ClpSolver())
662.92

* Value of the stochastic solution (VSS = EEV - VRP)

VSS(sp,solver=ClpSolver())
286.92

Many of the required calculations are embarassingly parallel
Martin Biel (KTH) Stochastic Programming for Hydropower 18 / 25

LShapedSolvers.jl

L-shaped algorithm variants

L-shaped [Van Slyke,Wets]
Multicut L-shaped [Birge,Louveaux]

Regularized decomposition [Ruszczyniski]
Trust-region L-shaped [Linderoth,Wright]
Level-set [Fabian,Szoke]

Martin Biel (KTH) Stochastic Programming for Hydropower 19 / 25

LShapedSolvers.jl

e L-shaped variants
1. L-shaped with multiple cuts (default): LShapedSolver(:1s)
2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)
4. L-shaped with level sets: LShapedSolver(:1lv)

Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

LShapedSolvers.jl

e L-shaped variants

1. L-shaped with multiple cuts (default): LShapedSolver(:1s)

2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)

4. L-shaped with level sets: LShapedSolver(:1lv)

e Distributed L-shaped variants

1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
Distributed regularized L-shaped: LShapedSolver(:drd)
Distributed L-shaped with trust region: LShapedSolver(:dtr)
Distributed L-shaped with level sets: LShapedSolver(:dlv)

BN

Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

LShapedSolvers.jl

e L-shaped variants
1. L-shaped with multiple cuts (default): LShapedSolver(:1s)
2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)
4. L-shaped with level sets: LShapedSolver(:1lv)

e Distributed L-shaped variants

1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
2. Distributed regularized L-shaped: LShapedSolver(:drd)

3. Distributed L-shaped with trust region: LShapedSolver(:dtr)
4. Distributed L-shaped with level sets: LShapedSolver(:dlv)

e Trait based implementation. Every solver is a combination of a:

o Regularization trait
o Parallelization trait

Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

LShapedSolvers.jl

e L-shaped variants

1. L-shaped with multiple cuts (default): LShapedSolver(:1s)

2. L-shaped with regularized decomposition: LShapedSolver(:rd)
3. L-shaped with trust region: LShapedSolver(:tr)

4. L-shaped with level sets: LShapedSolver(:1lv)

e Distributed L-shaped variants

1. Distributed L-shaped with multiple cuts: LShapedSolver(:dls)
2. Distributed regularized L-shaped: LShapedSolver(:drd)

3. Distributed L-shaped with trust region: LShapedSolver(:dtr)
4. Distributed L-shaped with level sets: LShapedSolver(:dlv)

e Trait based implementation. Every solver is a combination of a:

o Regularization trait
o Parallelization trait

e Subproblems are solved using MathProgBase solvers

Martin Biel (KTH) Stochastic Programming for Hydropower 20 / 25

HydroModels.jl

e Also based on deferred model creation and data injection

Martin Biel (KTH) Stochastic Programming for Hydropower

HydroModels.jl

e Also based on deferred model creation and data injection

e The user creates a model recipe using the enydromodet macro

Martin Biel (KTH) Stochastic Programming for Hydropower 21 /25

HydroModels.jl

e Also based on deferred model creation and data injection

e The user creates a model recipe using the enydronodet macro
Creating a Planning Problem

e Define model indices

e Define model data

Define modelindices(::AbstractHydroModelData, ::Horizon, args...)

Define optimization problem

Martin Biel (KTH) Stochastic Programming for Hydropower 21 /25

HydroModels.jl

e Also based on deferred model creation and data injection

e The user creates a model recipe using the enydronodet macro
Creating a Planning Problem

e Define model indices
e Define model data
e Define modelindices(::AbstractHydroModelData, ::Horizon, args...)

e Define optimization problem
Data injection keywords

e horizon: the time horizon if the model
e jndices: structure with model indices

e data: structure with model data

Martin Biel (KTH) Stochastic Programming for Hydropower 21 /25

HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours: :Vector{Int}
plants: :Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata: :HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
A::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon: :Horizon)
hours = collect(1l:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)
error("No plants in data")
end
return SimpleShortTermIndices(hours, plants)
end

Define the required model indices
Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours: :Vector{Int}
plants::Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata: :HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
A::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon: :Horizon)
hours = collect(1l:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)
error("No plants in data")
end
return SimpleShortTermIndices(hours, plants)
end

Define data structure that should be available in the model
Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Simple Example

struct SimpleShortTermIndices <: AbstractModelIndices
hours: :Vector{Int}
plants::Vector{Symbol}

end

struct SimpleShortTermData <: AbstractModelData
hydrodata: :HydroPlantCollection{Float64,2}
D::Vector{Float64} # Load balance
A::Vector{Float64} # Price curve

end

function modelindices(data::SimpleShortTermData,horizon: :Horizon)
hours = collect(1l:nhours(horizon))
plants = data.hydrodata.plants
if isempty(plants)
error("No plants in data")
end
return SimpleShortTermIndices (hours, plants)
end

Create model indices based on given data and time horizon
Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Simple Example

@hydromodel Deterministic SimpleShortTerm = begin

hours = indices.hours
plants = indices.plants

Hdéta = data.hydrodata
D = data.D
A = data.A

@variable(model, H[t = hours] >= 0) # Production each hour

@expression(model, value of stored water,
0.98*mean(A) *sum(M[p,24]*sum(hdata[i].pu[1]
for i = hdata.Qd[p])
for p = plants))
@objective(model, Max, net profit + value of stored water)

ééénstraint(model, load constraint[t = hours],
H[t] + Hp[t] - Hs[t] == D[t])

end

Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Simple Example

simple model = SimpleShortTermModel(Day(),data)
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Not yet planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Simple Example

simple model = SimpleShortTermModel(Day(),data)
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Not yet planned

plan! (simple model, optimsolver = CbcSolver())
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 24 hour horizon (1 day)

Optimally planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Simple Example

reinitialize! (simple_model,Week(),data)
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 168 hour horizon (1 week)

Not yet planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Simple Example

reinitialize! (simple_model,Week(),data)
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 168 hour horizon (1 week)

Not yet planned

plan! (simple model, optimsolver = CbcSolver())
Deterministic Hydro Power Model : Simple Short Term
including 5 power stations
over a 168 hour horizon (1 week)

Optimally planned

Martin Biel (KTH) Stochastic Programming for Hydropower 22 /25

HydroModels.jl - Day-Ahead Model

e HydroModels.jl model implemented using StochasticPrograms.jl

Martin Biel (KTH) Stochastic Programming for Hydropower 23 /25

HydroModels.jl - Day-Ahead Model

e HydroModels.jl model implemented using StochasticPrograms.jl

e Determine optimal order strategies on day-ahead electricity markets

Martin Biel (KTH) Stochastic Programming for Hydropower 23 /25

HydroModels.jl - Day-Ahead Model

e HydroModels.jl model implemented using StochasticPrograms.jl

e Determine optimal order strategies on day-ahead electricity markets
e Small benchmark

o 257 Swedish power stations
o 20 Price curve scenarios from the NordPool market
o 748042 variables and 376700 constraints in the extended form

Martin Biel (KTH) Stochastic Programming for Hydropower 23 /25

HydroModels.jl - Day-Ahead Model

e HydroModels.jl model implemented using StochasticPrograms.jl

e Determine optimal order strategies on day-ahead electricity markets
e Small benchmark

o 257 Swedish power stations
o 20 Price curve scenarios from the NordPool market
o 748042 variables and 376700 constraints in the extended form

o Results

o Gurobi on extended form: 58.2 seconds (4 9.2s for DEP generation)
o Distributed L-shaped: 31.5 seconds

o Distributed L-shaped with tuned trust-region: 26.7 seconds

Martin Biel (KTH) Stochastic Programming for Hydropower 23 /25

Final Remarks - Outlook on Future Work

e StochasticPrograms.jl

o Sampling
o Multistage models
o Progressive hedging solver

Martin Biel (KTH) Stochastic Programming for Hydropower

Final Remarks - Outlook on Future Work

e StochasticPrograms.jl

o Sampling
o Multistage models
o Progressive hedging solver

e HydroModels.jl

o Implement more models of hydropower operations

Martin Biel (KTH) Stochastic Programming for Hydropower 24 / 25

Final Remarks - Outlook on Future Work

e StochasticPrograms.jl

o Sampling
o Multistage models
o Progressive hedging solver

e HydroModels.jl
o Implement more models of hydropower operations
e |LShapedSolvers.jl

o Algorithmic improvements
o Hardware acceleration
o Support integer problems

Martin Biel (KTH) Stochastic Programming for Hydropower 24 / 25

Final Remarks - Summary

e Stochastic programming for hydropower operations in Julia

o StochasticPrograms.jl
o LShapedSolvers.jl
o HydroModels.jl

Martin Biel (KTH) Stochastic Programming for Hydropower 25 /25

Final Remarks - Summary

e Stochastic programming for hydropower operations in Julia

o StochasticPrograms.jl
o LShapedSolvers.jl
o HydroModels.jl

e Software innovations

o Deferred model creation
o Data injection

Martin Biel (KTH) Stochastic Programming for Hydropower 25 /25

Final Remarks - Summary

e Stochastic programming for hydropower operations in Julia

o StochasticPrograms.jl
o LShapedSolvers.jl
o HydroModels.jl

e Software innovations

o Deferred model creation
o Data injection

e Disclaimer: Not updated for MathOptlInterface and JuMP 0.19

Martin Biel (KTH) Stochastic Programming for Hydropower 25 /25

Final Remarks - Summary

Stochastic programming for hydropower operations in Julia

o StochasticPrograms.jl
o LShapedSolvers.jl
o HydroModels.jl

Software innovations

o Deferred model creation
o Data injection

Disclaimer: Not updated for MathOptInterface and JuMP 0.19

All packages are available on Github:

o https://github.com/martinbiel /StochasticPrograms.j|
o https://github.com/martinbiel /LShapedSolvers.jl
o https://github.com/martinbiel /HydroModels.jl

Feedback appreciated!

Martin Biel (KTH) Stochastic Programming for Hydropower 25 /25

