
Systematically building mixed-integer programming
formulations using JuMP and Julia

Joey Huchette

MIT (three weeks ago)
Google (in three weeks)

??? (right now)

June 27, 2018

Motivating example: The transportation problem

• How do I route natural gas from processing facilities (𝑆) to
distribution centers (𝐷) while minimizing transportation costs?

𝑆 𝐷

4

3

2

1

𝑐

𝑏

𝑎
𝑥􏷪,𝑎

𝑠􏷭

𝑠􏷬

𝑠􏷫

𝑠􏷪

𝑑𝑐

𝑑𝑏

𝑑𝑎

• Network flow problem on a bipartite graph

Motivating example: The transportation problem

• Cost = linear function over flow on each arc (fixed unit costs)

min
𝑥

􏾜
𝑖∈𝑆

􏾜
𝑗∈𝐷

𝑐𝑖,𝑗𝑥𝑖,𝑗

s.t. 􏾜
𝑗∈𝐷

𝑥𝑖,𝑗 = 𝑠𝑖 ∀𝑖 ∈ 𝑆

􏾜
𝑖∈𝑆

𝑥𝑖,𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐷

𝑥𝑖,𝑗 ≥ 0 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

• Linear optimization problem (with specialized algorithms)

Motivating example: The transportation problem

• Cost = concave function over flow on each arc (economies of scale)

min
𝑥

􏾜
𝑖∈𝑆

􏾜
𝑗∈𝐷

𝑓𝑖,𝑗(𝑥𝑖,𝑗)

s.t. 􏾜
𝑗∈𝐷

𝑥𝑖,𝑗 = 𝑠𝑖 ∀𝑖 ∈ 𝑆

􏾜
𝑖∈𝑆

𝑥𝑖,𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐷

𝑥𝑖,𝑗 ≥ 0 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

• How do we solve this nonconvex optimization problem?

Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

gr(𝑓) = 􏿺(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝐷􏿽

𝑥

𝑦 gr(𝑓)

Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

gr(𝑓) = 􏿺(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝐷􏿽

min
𝑥

􏾜
𝑖∈𝑆

􏾜
𝑗∈𝐷

𝑓𝑖,𝑗(𝑥𝑖,𝑗)

s.t. 􏾜
𝑗∈𝐷

𝑥𝑖,𝑗 = 𝑠𝑖 ∀𝑖 ∈ 𝑆

􏾜
𝑖∈𝑆

𝑥𝑖,𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐷

𝑥𝑖,𝑗 ≥ 0 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷
(𝑥𝑖,𝑗, 𝑧𝑖,𝑗) ∈ gr(𝑓𝑖,𝑗) ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

gr(𝑓) = 􏿺(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝐷􏿽

min
𝑥

􏾜
𝑖∈𝑆

􏾜
𝑗∈𝐷

𝑦𝑖,𝑗

s.t. 􏾜
𝑗∈𝐷

𝑥𝑖,𝑗 = 𝑠𝑖 ∀𝑖 ∈ 𝑆

􏾜
𝑖∈𝑆

𝑥𝑖,𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐷

𝑥𝑖,𝑗 ≥ 0 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷
(𝑥𝑖,𝑗, 𝑦𝑖,𝑗) ∈ gr(𝑓𝑖,𝑗) ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

𝑥 ∈ gr(𝑓) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖 ⊆ ℝ𝑛

2. Introduce integer variables 𝑧 ∈ ℤ𝑟

3. Build LP relaxation 𝑄 ⊆ ℝ𝑛+𝑟 so:

Proj𝑥 (𝑄 ∩ (ℝ𝑛 ×ℤ𝑟)) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖

? How do we choose 𝑄?

𝑥

𝑦

gr(𝑓)

𝑆􏷪

𝑆􏷫
𝑆􏷬 𝑆􏷭

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

𝑥 ∈ gr(𝑓) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖 ⊆ ℝ𝑛

2. Introduce integer variables 𝑧 ∈ ℤ𝑟

3. Build LP relaxation 𝑄 ⊆ ℝ𝑛+𝑟 so:

Proj𝑥 (𝑄 ∩ (ℝ𝑛 ×ℤ𝑟)) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖

? How do we choose 𝑄?

𝑥

𝑦

gr(𝑓)

𝑆􏷪

𝑆􏷫
𝑆􏷬 𝑆􏷭

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

𝑥 ∈ gr(𝑓) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖 ⊆ ℝ𝑛

2. Introduce integer variables 𝑧 ∈ ℤ𝑟

3. Build LP relaxation 𝑄 ⊆ ℝ𝑛+𝑟 so:

Proj𝑥 (𝑄 ∩ (ℝ𝑛 ×ℤ𝑟)) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖

? How do we choose 𝑄?

𝑥

𝑦

gr(𝑓)

𝑆􏷪

𝑆􏷫
𝑆􏷬 𝑆􏷭

Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

𝑥 ∈ gr(𝑓) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖 ⊆ ℝ𝑛

2. Introduce integer variables 𝑧 ∈ ℤ𝑟

3. Build LP relaxation 𝑄 ⊆ ℝ𝑛+𝑟 so:

Proj𝑥 (𝑄 ∩ (ℝ𝑛 ×ℤ𝑟)) = 􏾌
𝑑

𝑖=􏷪
𝑆𝑖

? How do we choose 𝑄?
𝑥

𝑦

gr(𝑓)

𝑆􏷪

𝑆􏷫
𝑆􏷬 𝑆􏷭

The right formulation matters!

𝑁 Metric MC CC DLog Stencil

4 Mean (s) 1.4 1.5 0.9 0.4
Win 0 0 0 100

8 Mean (s) 39.3 97.2 12.6 2.7
Win 0 0 0 100

16
Mean (s) 1370.9 1648.1 352.8 24.6

Fail 53 66 6 0
Win 0 0 0 80

32
Mean (s) 1800.0 1800.0 1499.6 133.5

Fail 80 80 50 0
Win 0 0 0 80

Solve time (in seconds, with CPLEX v12.7.0). Functions have 𝑁􏷫 pieces,
fixed network |𝑆| = |𝐷| = 􏷤.

• Advanced Stencil formulation is the fastest on every instance
• >10x speedup on average for medium/large instances
• Previous approaches could not solve 50 of 80 largest instances

The right formulation matters!

𝑁 Metric MC CC DLog Stencil

4 Mean (s) 1.4 1.5 0.9 0.4
Win 0 0 0 100

8 Mean (s) 39.3 97.2 12.6 2.7
Win 0 0 0 100

16
Mean (s) 1370.9 1648.1 352.8 24.6

Fail 53 66 6 0
Win 0 0 0 80

32
Mean (s) 1800.0 1800.0 1499.6 133.5

Fail 80 80 50 0
Win 0 0 0 80

Solve time (in seconds, with CPLEX v12.7.0). Functions have 𝑁 pieces,
fixed network |𝑆| = |𝐷| = 􏷤.

• Advanced Stencil formulation is the fastest on every instance
• >10x speedup on average for medium/large instances
• Previous approaches could not solve 50 of 80 largest instances

What do we want in a MIP formulation?

1 Strength How tight is the LP relaxation?

% Not sharp = bad bounds from LP

𝑥

𝑦

gr(𝑓)

Ideal = Sharp + ext(𝑄) ⊆ ℝ𝑛 ×ℤ𝑟

Ideal = strongest possible relaxation!

What do we want in a MIP formulation?

1 Strength How tight is the LP relaxation?

% Not sharp = bad bounds from LP

𝑥

𝑦

gr(𝑓)

LP opt
IP opt

Ideal = Sharp + ext(𝑄) ⊆ ℝ𝑛 ×ℤ𝑟

Ideal = strongest possible relaxation!

What do we want in a MIP formulation?

1 Strength How tight is the LP relaxation?

! Sharp = good bounds from LP

𝑥

𝑦

gr(𝑓)

Ideal = Sharp + ext(𝑄) ⊆ ℝ𝑛 ×ℤ𝑟

Ideal = strongest possible relaxation!

What do we want in a MIP formulation?

1 Strength How tight is the LP relaxation?

! Sharp = good bounds from LP

𝑥

𝑦

gr(𝑓)

! Ideal = Sharp + ext(𝑄) ⊆ ℝ𝑛 ×ℤ𝑟

Ideal = strongest possible relaxation!

What do we want in a MIP formulation?

1 Strength How tight is the LP relaxation?

! Sharp = good bounds from LP

𝑥

𝑦

gr(𝑓)

! Ideal = Sharp + ext(𝑄) ⊆ ℝ𝑛 ×ℤ𝑟

Ideal = strongest possible relaxation!

What do we want in a MIP formulation?

2 Size How many additional variables and constraints?

𝑥 ∈
𝑑
􏾌
𝑖=􏷪

𝑆𝑖 ⟺ exists 𝑧 ∈ ℤ𝑟 such that (𝑥, 𝑧) ∈ 𝑄

𝑄 = 􏿼 (𝑥, 𝑧) | 𝐴 􏿶
𝑥
𝑧􏿹 ≤ 𝑏 􏿿 , where 𝐴 ∈ ℝ𝑚×(𝑛+𝑟)

• How big is...
∘ 𝑟? (# of integer variables)
∘ 𝑚? (# of constraints)

• The smaller 𝑚∗ and 𝑟, the quicker to optimize over LP relaxation
∗(We really only care about general inequality constraints, we get variable bounds, e.g. 𝑥 ≥ 􏷩, for free)

What do we want in a MIP formulation?

2 Size How many additional variables and constraints?

𝑥 ∈
𝑑
􏾌
𝑖=􏷪

𝑆𝑖 ⟺ exists 𝑧 ∈ ℤ𝑟 such that (𝑥, 𝑧) ∈ 𝑄

𝑄 = 􏿼 (𝑥, 𝑧) | 𝐴 􏿶
𝑥
𝑧􏿹 ≤ 𝑏 􏿿 , where 𝐴 ∈ ℝ𝑚×(𝑛+𝑟)

• How big is...
∘ 𝑟? (# of integer variables)
∘ 𝑚? (# of constraints)

• The smaller 𝑚∗ and 𝑟, the quicker to optimize over LP relaxation
∗(We really only care about general inequality constraints, we get variable bounds, e.g. 𝑥 ≥ 􏷩, for free)

What do we want in a MIP formulation?

2 Size How many additional variables and constraints?

𝑥 ∈
𝑑
􏾌
𝑖=􏷪

𝑆𝑖 ⟺ exists 𝑧 ∈ ℤ𝑟 such that (𝑥, 𝑧) ∈ 𝑄

𝑄 = 􏿼 (𝑥, 𝑧) | 𝐴 􏿶
𝑥
𝑧􏿹 ≤ 𝑏 􏿿 , where 𝐴 ∈ ℝ𝑚×(𝑛+𝑟)

• How big is...
∘ 𝑟? (# of integer variables)
∘ 𝑚? (# of constraints)

• The smaller 𝑚∗ and 𝑟, the quicker to optimize over LP relaxation
∗(We really only care about general inequality constraints, we get variable bounds, e.g. 𝑥 ≥ 􏷩, for free)

What do we want in a MIP formulation?

2 Size How many additional variables and constraints?

𝑥 ∈
𝑑
􏾌
𝑖=􏷪

𝑆𝑖 ⟺ exists 𝑧 ∈ ℤ𝑟 such that (𝑥, 𝑧) ∈ 𝑄

𝑄 = 􏿼 (𝑥, 𝑧) | 𝐴 􏿶
𝑥
𝑧􏿹 ≤ 𝑏 􏿿 , where 𝐴 ∈ ℝ𝑚×(𝑛+𝑟)

• How big is...
∘ 𝑟? (# of integer variables)
∘ 𝑚? (# of constraints)

• The smaller 𝑚∗ and 𝑟, the quicker to optimize over LP relaxation
∗(We really only care about general inequality constraints, we get variable bounds, e.g. 𝑥 ≥ 􏷩, for free)

What do we want in a MIP formulation?

3 Branching How does formulation change in branch-and-bound?

𝑥

𝑦

gr(𝑓)

𝑧􏷪 ≥ 1

Branching with Formulation A

What do we want in a MIP formulation?

3 Branching How does formulation change in branch-and-bound?

𝑥

𝑦

gr(𝑓)

𝑧􏷪 ≤ 0

𝑥

𝑦

gr(𝑓)

𝑧􏷪 ≥ 1

Branching with Formulation A

What do we want in a MIP formulation?

3 Branching How does formulation change in branch-and-bound?

𝑥

𝑦

gr(𝑓)

𝑧􏷪 ≤ 0

𝑥

𝑦

gr(𝑓)

𝑧􏷪 ≥ 1

Branching with Formulation B

How can we build MIP formulations?

Approach #1: Ad-hoc formulations

Ad-hoc formulations for trained neural networks

• Just reason it out by hand!

• Simple example:

MAX = 􏿺 (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ | 𝐿 ≤ 𝑥 ≤ 𝑈, 𝑦 = max{0, 𝑤 ⋅ 𝑥 + 𝑏} 􏿽

• MAX ≡ ReLu activation unit in trained neural network
• Big-𝑀 formulation:

𝑦 + 𝐿(1 − 𝑧) ≤ 𝑤 ⋅ 𝑥 + 𝑏 ≤ 𝑦
𝑦 ≤ 𝑈𝑧

(𝑥, 𝑦, 𝑧) ∈ [𝐿,𝑈] × ℝ≥􏷩 × {0, 1}

• Not ideal or sharp

Ad-hoc formulations for trained neural networks

• Just reason it out by hand!
• Simple example:

MAX = 􏿺 (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ | 𝐿 ≤ 𝑥 ≤ 𝑈, 𝑦 = max{0, 𝑤 ⋅ 𝑥 + 𝑏} 􏿽

• MAX ≡ ReLu activation unit in trained neural network
• Big-𝑀 formulation:

𝑦 + 𝐿(1 − 𝑧) ≤ 𝑤 ⋅ 𝑥 + 𝑏 ≤ 𝑦
𝑦 ≤ 𝑈𝑧

(𝑥, 𝑦, 𝑧) ∈ [𝐿,𝑈] × ℝ≥􏷩 × {0, 1}

• Not ideal or sharp

Ad-hoc formulations for trained neural networks

• Just reason it out by hand!
• Simple example:

MAX = 􏿺 (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ | 𝐿 ≤ 𝑥 ≤ 𝑈, 𝑦 = max{0, 𝑤 ⋅ 𝑥 + 𝑏} 􏿽

• MAX ≡ ReLu activation unit in trained neural network

• Big-𝑀 formulation:

𝑦 + 𝐿(1 − 𝑧) ≤ 𝑤 ⋅ 𝑥 + 𝑏 ≤ 𝑦
𝑦 ≤ 𝑈𝑧

(𝑥, 𝑦, 𝑧) ∈ [𝐿,𝑈] × ℝ≥􏷩 × {0, 1}

• Not ideal or sharp

Ad-hoc formulations for trained neural networks

• Just reason it out by hand!
• Simple example:

MAX = 􏿺 (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ | 𝐿 ≤ 𝑥 ≤ 𝑈, 𝑦 = max{0, 𝑤 ⋅ 𝑥 + 𝑏} 􏿽

• MAX ≡ ReLu activation unit in trained neural network
• Big-𝑀 formulation:

𝑦 + 𝐿(1 − 𝑧) ≤ 𝑤 ⋅ 𝑥 + 𝑏 ≤ 𝑦
𝑦 ≤ 𝑈𝑧

(𝑥, 𝑦, 𝑧) ∈ [𝐿,𝑈] × ℝ≥􏷩 × {0, 1}

• Not ideal or sharp

Ad-hoc formulations for trained neural networks

• Just reason it out by hand!
• Simple example:

MAX = 􏿺 (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ | 𝐿 ≤ 𝑥 ≤ 𝑈, 𝑦 = max{0, 𝑤 ⋅ 𝑥 + 𝑏} 􏿽

• MAX ≡ ReLu activation unit in trained neural network
• Big-𝑀 formulation:

𝑦 + 𝐿(1 − 𝑧) ≤ 𝑤 ⋅ 𝑥 + 𝑏 ≤ 𝑦
𝑦 ≤ 𝑈𝑧

(𝑥, 𝑦, 𝑧) ∈ [𝐿,𝑈] × ℝ≥􏷩 × {0, 1}

• Not ideal or sharp

Approach #2: Combinatorial construction framework

Univariate piecewise linear functions

𝑥

𝑦

𝑆􏷪

𝑆􏷫
𝑆􏷬 𝑆􏷭

gr(𝑓)

𝑥

𝑦

gr(𝑓)

𝑣􏷪

𝑣􏷫 𝑣􏷬

𝑣􏷭

𝑣􏷮

• Introduce 𝜆𝑖 variable for each breakpoint 𝑣𝑖

(𝑥, 𝑦) ∈ gr(𝑓) ⟺ (𝑥, 𝑦) =
𝑑+􏷪
􏾜
𝑖=􏷪

𝑣𝑖𝜆𝑖 and 𝜆 is SOS2

• 𝜆 is SOS2 if: [Beale 1970, 1976]
1. they are convex multipliers (𝜆 ∈ 􏸷𝑑+􏷪 = unit simplex)
2. 􏸒􏸔􏸏􏸏􏸎􏸑􏸓(𝜆) ⊆ {𝑗, 𝑗 + 􏷠} for some 𝑗

Univariate piecewise linear functions

𝑥

𝑦

𝑆􏷪

𝑆􏷫
𝑆􏷬 𝑆􏷭

gr(𝑓)

𝑥

𝑦

gr(𝑓)

𝑣􏷪

𝑣􏷫 𝑣􏷬

𝑣􏷭

𝑣􏷮

• Introduce 𝜆𝑖 variable for each breakpoint 𝑣𝑖

(𝑥, 𝑦) ∈ gr(𝑓) ⟺ (𝑥, 𝑦) =
𝑑+􏷪
􏾜
𝑖=􏷪

𝑣𝑖𝜆𝑖 and 𝜆 is SOS2

• 𝜆 is SOS2 if: [Beale 1970, 1976]
1. they are convex multipliers (𝜆 ∈ 􏸷𝑑+􏷪 = unit simplex)
2. 􏸒􏸔􏸏􏸏􏸎􏸑􏸓(𝜆) ⊆ {𝑗, 𝑗 + 􏷠} for some 𝑗

Univariate piecewise linear functions

𝑥

𝑦

𝑆􏷪

𝑆􏷫
𝑆􏷬 𝑆􏷭

gr(𝑓)

𝑥

𝑦

gr(𝑓)

𝑣􏷪

𝑣􏷫 𝑣􏷬

𝑣􏷭

𝑣􏷮

• Introduce 𝜆𝑖 variable for each breakpoint 𝑣𝑖

(𝑥, 𝑦) ∈
𝑑
􏾌
𝑖=􏷪

𝑆𝑖 ⟺ (𝑥, 𝑦) =
𝑑+􏷪
􏾜
𝑖=􏷪

𝑣𝑖𝜆𝑖 and 𝜆 ∈
𝑑
􏾌
𝑖=􏷪

𝑃({𝑖, 𝑖 + 1})

• 𝑃(𝑇) = {𝜆 ∈ Δ𝑑+􏷪 ∶ support(𝜆) ⊆ 𝑇} (face of the simplex)

The SOS2 constraint

𝜆 ∈
𝑑
􏾌
𝑖=1

𝑃({𝑖, 𝑖 + 1})
𝜆􏷪

𝜆􏷫

𝜆􏷬

𝑃({1, 2})
𝑃({2, 3})

1. Strip away problem data (values of 𝑣𝑖)
2. Formulate the SOS2 constraint on 𝜆 over the unit simplex Δ𝑑+􏷪

3. Apply linear transformation (𝑥, 𝑦) = ∑𝑑+􏷪
𝑖=􏷪 𝑣𝑖𝜆𝑖

𝑃(𝑇) = {𝜆 ∈ Δ𝑑+􏷪 ∶ support(𝜆) ⊆ 𝑇}(face of the simplex)

A combinatorial way to build formulations

𝑣􏷪

𝑣􏷫 𝑣􏷬

𝑣􏷭

𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

conflict graph

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

biclique cover

𝜆􏷪 + 𝜆􏷮 ≤ 􏷠 − 𝑧􏷪
𝜆􏷬 ≤ 𝑧􏷪

𝜆􏷪 + 𝜆􏷫 ≤ 􏷠 − 𝑧􏷫
𝜆􏷭 + 𝜆􏷮 ≤ 𝑧􏷫

(𝜆, 𝑧) ∈ 􏸷􏷮 × {􏷟, 􏷠}􏷫

A combinatorial way to build formulations

𝑣􏷪

𝑣􏷫 𝑣􏷬

𝑣􏷭

𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

conflict graph

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

biclique cover

𝜆􏷪 + 𝜆􏷮 ≤ 􏷠 − 𝑧􏷪
𝜆􏷬 ≤ 𝑧􏷪

𝜆􏷪 + 𝜆􏷫 ≤ 􏷠 − 𝑧􏷫
𝜆􏷭 + 𝜆􏷮 ≤ 𝑧􏷫

(𝜆, 𝑧) ∈ 􏸷􏷮 × {􏷟, 􏷠}􏷫

A combinatorial way to build formulations

𝑣􏷪

𝑣􏷫 𝑣􏷬

𝑣􏷭

𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

conflict graph

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

biclique cover

𝜆􏷪 + 𝜆􏷮 ≤ 􏷠 − 𝑧􏷪
𝜆􏷬 ≤ 𝑧􏷪

𝜆􏷪 + 𝜆􏷫 ≤ 􏷠 − 𝑧􏷫
𝜆􏷭 + 𝜆􏷮 ≤ 𝑧􏷫

(𝜆, 𝑧) ∈ 􏸷􏷮 × {􏷟, 􏷠}􏷫

A combinatorial way to build formulations

𝑣􏷪

𝑣􏷫 𝑣􏷬

𝑣􏷭

𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

conflict graph

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

𝑣􏷪 𝑣􏷫 𝑣􏷬 𝑣􏷭 𝑣􏷮

biclique cover

𝜆􏷪 + 𝜆􏷮 ≤ 􏷠 − 𝑧􏷪
𝜆􏷬 ≤ 𝑧􏷪

𝜆􏷪 + 𝜆􏷫 ≤ 􏷠 − 𝑧􏷫
𝜆􏷭 + 𝜆􏷮 ≤ 𝑧􏷫

(𝜆, 𝑧) ∈ 􏸷􏷮 × {􏷟, 􏷠}􏷫

Independent branching formulations

• Conflict graph: 𝒢 𝑐 = ([𝑛], 𝐸), where

𝐸 = 􏿺{𝑢, 𝑣} ∈ [𝑛]􏷫 ∶ {𝑢, 𝑣} ⊈ 𝑇 𝑖 for each 𝑖􏿽

• Biclique cover for 𝒢 𝑐: {(𝐴𝑗, 𝐵𝑗)}𝑡𝑗=􏷪 where 𝐸 = ⋃𝑡
𝑗=􏷪(𝐴𝑗 × 𝐵𝑗)

Theorem (H. and Vielma 2016)

If an independent branching formulation exists∗ for
⋃𝑑

𝑖=􏷪 𝑃(𝑇 𝑖), then

􏾜
𝑣∈𝐴𝑗

𝜆𝑣 ≤ 𝑧𝑗, 􏾜
𝑣∈𝐵𝑗

𝜆𝑣 ≤ 1 − 𝑧𝑗, 𝑧𝑗 ∈ {0, 1} ∀𝑗 ∈ [𝑡]

is an ideal formulation for ⋃𝑑
𝑖=􏷪 𝑃(𝑇 𝑖) if and only if {(𝐴𝑗, 𝐵𝑗)}𝑡𝑗=􏷪

is a biclique cover for 𝒢 𝑐.

Bivariate piecewise linear functions

𝑥􏷪

𝑥􏷫

𝑦

Stencil formulation for bivariate functions

• Aggregated SOS2 along 𝑥 direction
• Separated edges between vertices that are “far apart” in 𝑥 direction
• Needs ⌈log􏷫(# breakpoints in 𝑥 direction)⌉ levels (variables)

Stencil formulation for bivariate functions

• Aggregated SOS2 along 𝑦 direction
• Separated edges between vertices that are “far apart” in 𝑦 direction
• Needs ⌈log􏷫(# breakpoints in 𝑦 direction)⌉ levels (variables)

Stencil formulation for bivariate functions

• Separate all edges along diagonal lines
• Can aggregate diagonal lines that are “far apart”
• Needs 3 levels (variables)

Stencil formulation for bivariate functions

• Separate all edges along anti-diagonal lines
• Can aggregate anti-diagonal lines that are “far apart”
• Needs 3 levels (variables)

A combinatorial way to build formulations

• How do we do this automatically?
• Especially important for more unstructured constraints:

A combinatorial way to build formulations

• How do we do this automatically?
• Simple MIP formulation for minimum biclique cover
• Implemented in PiecewiseLinearOpt.jl to make stencil

formulation “smaller”
• Unfortunately, it doesn’t scale
• Wishlist:

1. Practically efficient algorithm for minimum biclique cover...
2. ...and an implementation in Julia

Approach #3: Geometric construction framework

The embedding approach

𝑃(𝑇􏷪)

𝑃(𝑇􏷫)
𝑃(𝑇􏷬)

𝑃(𝑇􏷭)

ℎ􏷪 = 􏿶
􏷟
􏷟􏿹

ℎ􏷫 = 􏿶
􏷠
􏷟􏿹

ℎ􏷪 = 􏿶
􏷡
􏷠􏿹

Two ingredients:
1. The sets 𝒯 = (𝑇 𝑖 ⊆ [𝑛])𝑑𝑖=􏷪 (correspond to faces of simplex; not in (𝑥, 𝑧)-space!)

Unique codes 𝐻 = (ℎ𝑖)𝑑𝑖=􏷪 ⊂ ℝ𝑟 (also hole-free, in convex position)

The embedding approach

ℎ􏷪 = 􏿶
􏷟
􏷟􏿹

ℎ􏷫 = 􏿶
􏷠
􏷟􏿹

ℎ􏷬 = 􏿶
􏷠
􏷠􏿹 ℎ􏷭 = 􏿶

􏷡
􏷠􏿹

Two ingredients:
1. The sets 𝒯 = (𝑇 𝑖 ⊆ [𝑛])𝑑𝑖=􏷪 (correspond to faces of simplex; not in (𝑥, 𝑧)-space!)

2. Unique codes 𝐻 = (ℎ𝑖)𝑑𝑖=􏷪 ⊂ ℝ𝑟 (also hole-free, in convex position)

The embedding approach

ℎ􏷪 = 􏿶
􏷟
􏷟􏿹

ℎ􏷫 = 􏿶
􏷠
􏷟􏿹

ℎ􏷬 = 􏿶
􏷠
􏷠􏿹 ℎ􏷭 = 􏿶

􏷡
􏷠􏿹

Two ingredients:
1. The sets 𝒯 = (𝑇 𝑖 ⊆ [𝑛])𝑑𝑖=􏷪 (correspond to faces of simplex; not in (𝑥, 𝑧)-space!)

2. Unique codes 𝐻 = (ℎ𝑖)𝑑𝑖=􏷪 ⊂ ℝ𝑟 (also hole-free, in convex position)

Build embedding:

Em(𝒯 ,𝐻) = 􏿶
𝑃(𝑇􏷪)
ℎ􏷪 􏿹 ∪ 􏿶

𝑃(𝑇􏷫)
ℎ􏷫 􏿹 ∪⋯ ∪ 􏿶

𝑃(𝑇𝑑)
ℎ𝑑 􏿹

The embedding approach

ℎ􏷪 = 􏿶
􏷟
􏷟􏿹

ℎ􏷫 = 􏿶
􏷠
􏷟􏿹

ℎ􏷬 = 􏿶
􏷠
􏷠􏿹 ℎ􏷭 = 􏿶

􏷡
􏷠􏿹

Two ingredients:
1. The sets 𝒯 = (𝑇 𝑖 ⊆ [𝑛])𝑑𝑖=􏷪 (correspond to faces of simplex; not in (𝑥, 𝑧)-space!)

2. Unique codes 𝐻 = (ℎ𝑖)𝑑𝑖=􏷪 ⊂ ℝ𝑟 (also hole-free, in convex position)

Proposition (Vielma 2017)

Conv(Em(𝒯 ,𝐻)) is an ideal formulation. Conversely, any non-
extended ideal formulation implies the existence of some corre-
sponding 𝒯 and 𝐻 .

Geometric formulation construction

Theorem (H. and Vielma 2017a)

If 𝒯 is path connected and 𝐻 is in convex position, then
Conv(Em(𝒯 ,𝐻)) is

𝑛
􏾜
𝑣=􏷪

min
𝑠∶𝑣∈𝑇𝑠

{𝑏 ⋅ ℎ𝑠}𝜆𝑣 ≤ 𝑏 ⋅ 𝑧 ≤
𝑛
􏾜
𝑣=􏷪

max
𝑠∶𝑣∈𝑇𝑠

{𝑏 ⋅ ℎ𝑠}𝜆𝑣 ∀𝑏 ∈ 𝐵

(𝜆, 𝑧) ∈ Δ𝑛 × aff(𝐻),

where 𝐵 contains normal directions to all hyperplanes spanned
by 𝐶 = 􏿺ℎ𝑗 − ℎ𝑖 ∶ 𝑇 𝑖 ∩ 𝑇 𝑗 ≠ ∅􏿽 in span(𝐶).

Crucial points:
variables = # of components of codes in 𝐻
constraints = 2 ×(# hyperplanes)

Geometric formulation construction

Theorem (H. and Vielma 2017a)

If 𝒯 is path connected and 𝐻 is in convex position, then
Conv(Em(𝒯 ,𝐻)) is

𝑛
􏾜
𝑣=􏷪

min
𝑠∶𝑣∈𝑇𝑠

{𝑏 ⋅ ℎ𝑠}𝜆𝑣 ≤ 𝑏 ⋅ 𝑧 ≤
𝑛
􏾜
𝑣=􏷪

max
𝑠∶𝑣∈𝑇𝑠

{𝑏 ⋅ ℎ𝑠}𝜆𝑣 ∀𝑏 ∈ 𝐵

(𝜆, 𝑧) ∈ Δ𝑛 × aff(𝐻),

where 𝐵 contains normal directions to all hyperplanes spanned
by 𝐶 = 􏿺ℎ𝑗 − ℎ𝑖 ∶ 𝑇 𝑖 ∩ 𝑇 𝑗 ≠ ∅􏿽 in span(𝐶).

Crucial points:
1. # variables = # of components of codes in 𝐻
2. # constraints = 2 ×(# hyperplanes)

Geometric formulation construction

𝑧􏷪ℎ􏷪

ℎ􏷱

𝑧􏷬

𝑧􏷫

1. Ambient space ℝ􏸥􏸨􏸠􏷫(𝑑) ⟹ log􏷫(𝑑) variables

Geometric formulation construction

𝑧􏷪ℎ􏷪

ℎ􏷱

𝑧􏷬

𝑧􏷫

𝐶 = 􏿺ℎ𝑗 − ℎ𝑖 ∶ 𝑇 𝑖 ∩ 𝑇 𝑗 ≠ ∅􏿽
ℎ𝑖+􏷪 − ℎ𝑖 ∈ 𝐶 are axis-aligned ⟹ 2log􏷫(𝑑) constraints

Geometric formulation construction

𝑧􏷪ℎ􏷪

ℎ􏷱

𝑧􏷬

𝑧􏷫

𝐶 = 􏿺ℎ𝑖+1 − ℎ𝑖􏿽
𝑑−1

𝑖=1
ℎ𝑖+􏷪 − ℎ𝑖 ∈ 𝐶 are axis-aligned ⟹ 2log􏷫(𝑑) constraints

Geometric formulation construction

𝑧􏷪ℎ􏷪

ℎ􏷱

𝑧􏷬

𝑧􏷫

𝐶 = 􏿺e𝑖􏿽
log2(𝑑)

𝑖=1
ℎ𝑖+􏷪 − ℎ𝑖 ∈ 𝐶 are axis-aligned ⟹ 2log􏷫(𝑑) constraints

Geometric formulation construction

𝑧􏷪ℎ􏷪

ℎ􏷱

𝑧􏷬

𝑧􏷫

𝐵 = normal directions to hyperplanes spanned by 𝐶
ℎ𝑖+􏷪 − ℎ𝑖 ∈ 𝐶 are axis-aligned ⟹ 2log􏷫(𝑑) constraints

Geometric formulation construction

𝑧􏷪ℎ􏷪

ℎ􏷱

𝑧􏷬

𝑧􏷫

𝐵 = 􏿺e𝑖􏿽
log2(𝑑)

𝑖=1

2. directions in 𝐶 are axis-aligned ⟹ 2log􏷫(𝑑) constraints

Geometric formulation construction

𝑧􏷪ℎ􏷪

ℎ􏷱

𝑧􏷬

𝑧􏷫

𝐵 = 􏿺e𝑖􏿽
log2(𝑑)

𝑖=1
2. directions in 𝐶 are axis-aligned ⟹ 2log􏷫(𝑑) constraints

Interlude: Modeling tools

Here’s the math (𝑑 = 8):

􏸌􏸈􏸍
𝑥

􏾜
𝑖∈𝑆

􏾜
𝑗∈𝐷

𝑓𝑖,𝑗(𝑥𝑖,𝑗)

s.t. 􏾜
𝑗∈𝐷

𝑥𝑖,𝑗 = 𝑠𝑖 ∀𝑖 ∈ 𝑆

􏾜
𝑖∈𝑆

𝑥𝑖,𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐷

𝑥𝑖,𝑗 ≥ 􏷟 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

Interlude: Modeling tools

Here’s the math (𝑑 = 8):

􏸌􏸈􏸍
𝑥≥􏷩

􏾜
𝑖∈𝑆

􏾜
𝑗∈𝐷

𝑧𝑖,𝑗

s.t. 􏾜
𝑗∈𝐷

𝑥𝑖,𝑗 = 𝑠𝑖 ∀𝑖 ∈ 𝑆

􏾜
𝑖∈𝑆

𝑥𝑖,𝑗 = 𝑑𝑗 ∀𝑗 ∈ 𝐷

(𝑥𝑖,𝑗, 𝑧𝑖,𝑗) = 􏾜𝑁+􏷪
𝑘=􏷪

𝑣𝑘𝑖,𝑗𝜆
𝑖,𝑗
𝑘 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

𝜆𝑖,𝑗􏷬 + 𝜆𝑖,𝑗􏷭 + 􏷡𝜆𝑖,𝑗􏷮 + 􏷡𝜆𝑖,𝑗􏷯 + 􏷢𝜆𝑖,𝑗􏷰 + 􏷢𝜆𝑖,𝑗􏷱 + 􏷣𝜆𝑖,𝑗􏷲 ≤ 𝑧𝑖,𝑗􏷪 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

𝜆𝑖,𝑗􏷫 + 𝜆𝑖,𝑗􏷬 + 􏷡𝜆𝑖,𝑗􏷭 + 􏷡𝜆𝑖,𝑗􏷮 + 􏷢𝜆𝑖,𝑗􏷯 + 􏷢𝜆𝑖,𝑗􏷰 + 􏷣𝜆𝑖,𝑗􏷱 + 􏷣𝜆𝑖,𝑗􏷲 ≥ 𝑧𝑖,𝑗􏷪 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

𝜆𝑖,𝑗􏷭 + 𝜆𝑖,𝑗􏷮 + 𝜆𝑖,𝑗􏷯 + 𝜆𝑖,𝑗􏷰 + 􏷡𝜆𝑖,𝑗􏷱 + 􏷡𝜆𝑖,𝑗􏷲 ≤ 𝑧𝑖,𝑗􏷫 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

𝜆𝑖,𝑗􏷬 + 𝜆𝑖,𝑗􏷭 + 𝜆𝑖,𝑗􏷮 + 𝜆𝑖,𝑗􏷯 + 􏷡𝜆𝑖,𝑗􏷰 + 􏷡𝜆𝑖,𝑗􏷱 + 􏷡𝜆𝑖,𝑗􏷲 ≥ 𝑧𝑖,𝑗􏷫 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

𝜆𝑖,𝑗􏷯 + 𝜆𝑖,𝑗􏷰 + 𝜆𝑖,𝑗􏷱 + 𝜆𝑖,𝑗􏷲 ≤ 𝑧𝑖,𝑗􏷬 ≤ 𝜆𝑖,𝑗􏷮 + 𝜆𝑖,𝑗􏷯 + 𝜆𝑖,𝑗􏷰 + 𝜆𝑖,𝑗􏷱 + 𝜆𝑖,𝑗􏷲 ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷
(𝜆𝑖,𝑗, 𝑧𝑖,𝑗) ∈ 􏸷􏷲 × {􏷟, 􏷠, 􏷡, 􏷢, 􏷣} × {􏷟, 􏷠, 􏷡} × {􏷟, 􏷠} ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷

Now turn this into code.

Interlude: Modeling tools

using JuMP, PiecewiseLinearOpt
model = Model()
@variable(model, x[i in S, j in D] >= 0)
for j in D

@constraint(model, sum(x[i,j] for i in S) == d[j])
end
for i in S

@constraint(model, sum(x[i,j] for j in D) == s[i])
end
for i in S, j in D

z[i,j] = piecewiselinear(model, x[i,j], t[i,j],
f[i,j], method=:ZigZag)↪

end
@objective(model, Min, sum(z))
solve(model)

Building ideal formulations computationally

• Wishlist:
1. Practically efficient algorithm for spanning hyperplanes...
2. ...and a Julia implementation

Proposition (Vielma 2017)

Conv(Em(𝒯 ,𝐻)) is an ideal formulation. Conversely, any non-
extended ideal formulation implies the existence of some corre-
sponding 𝒯 and 𝐻 .

• Key point: Compute convex hull for an ideal formulation!
• Instead of computing spanning hyperplanes directly...use Julia!

Building ideal formulations computationally

• Tower puzzle (Juan Pablo Vielma and Austin Herrling): place
integers on rectangular grid, subject to “vision number” constraints

• Which formulation for “vision number” constraints? Compute it!
using CDDLib, Polyhedra
...
vertices = compute_vision_numbers(idx)
points = SimpleVRepresentation(vertices)
poly = polyhedron(points, CDDLibrary(:exact))
removehredundancy!(poly)
ineq = SimpleHRepresentation(poly) #ineq.A, ineq.b
...

Building intuition with computational tools
• What if I want a generic ideal formulation? Compute examples!
• Generate some data and turn this...
m = Model()
@variable(m, l[i] <= x[i=1:d] <= u[i])
@variable(m, y >= 0)
@variable(m, z0 >= 0)
@variable(m, z1 >= 0)
@variable(m, x0[1:d])
@variable(m, y0)
@variable(m, x1[1:d])
@variable(m, y1 >= 0)
@constraint(m, [i=1:d], x[i] == x0[i] + x1[i])
@constraint(m, y == y0 + y1)
@constraint(m, 1 == z0 + z1)
@constraint(m, y0 == 0)
@constraint(m, dot(w,x0) + b <= 0)
@constraint(m, [i=1:d], x0[i] >= l[i]*z1)
@constraint(m, [i=1:d], x0[i] <= u[i]*z1)
@constraint(m, y1 == dot(w,x1) + b)
@constraint(m, [i=1:d], x1[i] >= l[i]*z0)
@constraint(m, [i=1:d], x1[i] <= u[i]*z0)
poly = polyhedron(m, CDDLibrary(:exact))
P = eliminate(poly, [eliminate_vars;])
removehredundancy!(P)

Building intuition with computational tools

• What if I want a generic ideal formulation? Compute examples!
• ...into this...
-1 x_1 + 0 x_2 + 0 x_3 + -1 y + -39 z <= 4
-1 x_1 + 2 x_2 + 0 x_3 + -1 y + -9 z <= 20
1 x_1 + -2 x_2 + 3 x_3 + 1 y + 50 z <= 51
1 x_1 + -2 x_2 + 0 x_3 + 1 y + -7 z <= 21
0 x_1 + -2 x_2 + 3 x_3 + 1 y + 39 z <= 45
0 x_1 + -2 x_2 + 0 x_3 + 1 y + -18 z <= 15
1 x_1 + 0 x_2 + 3 x_3 + 1 y + 20 z <= 37
0 x_1 + 0 x_2 + 3 x_3 + 1 y + 9 z <= 31
1 x_1 + 0 x_2 + 0 x_3 + 1 y + -37 z <= 7
0 x_1 + 0 x_2 + 0 x_3 + 1 y + -48 z <= 1
0 x_1 + 2 x_2 + 0 x_3 + -1 y + -20 z <= 15
0 x_1 + 0 x_2 + 0 x_3 + -1 y + -50 z <= -1
1 x_1 + 0 x_2 + 0 x_3 + 0 y + 0 z <= 6
0 x_1 + 0 x_2 + 1 x_3 + 0 y + 0 z <= 10
-1 x_1 + 0 x_2 + 0 x_3 + 0 y + 0 z <= 5
0 x_1 + 1 x_2 + 0 x_3 + 0 y + 0 z <= 8
0 x_1 + -1 x_2 + 0 x_3 + 0 y + 0 z <= 7
0 x_1 + 0 x_2 + 0 x_3 + -1 y + 0 z <= 0
-1 x_1 + 2 x_2 + -3 x_3 + -1 y + 0 z <= -2

Building intuition with computational tools

• What if I want a generic ideal formulation? Compute examples!
• ...and then eventually this:

Proposition (Huchette 2018)

An ideal formulation for MAX is:

𝑦 ≥ 𝑤 ⋅ 𝑥 + 𝑏

𝑦 ≤ 􏾜
𝑖∈𝐼

𝑤𝑖𝑥𝑖 −􏾜
𝑖∈𝐼

𝑤𝑖𝐿𝑖(1 − 𝑧) +

⎛
⎜⎜⎜⎜⎜⎝𝑏 +􏾜

𝑖∉𝐼
𝑤𝑖𝑈𝑖

⎞
⎟⎟⎟⎟⎟⎠ 𝑧 ∀𝐼 ⊆ J𝑑K

𝑦 ≥ 􏾜
𝑖∈𝐼

𝑤𝑖𝑥𝑖 −􏾜
𝑖∈𝐼

𝑤𝑖𝑈𝑖(1 − 𝑧) +

⎛
⎜⎜⎜⎜⎜⎝𝑏 +􏾜

𝑖∉𝐼
𝑤𝑖𝐿𝑖

⎞
⎟⎟⎟⎟⎟⎠ 𝑧 ∀𝐼 ⊆ J𝑑K

(𝑥, 𝑦, 𝑧) ∈ [𝐿,𝑈] × ℝ≥􏷩 × {0, 1}.

Conclusion

• Choice of formulation can greatly affect performance
• Many ways to build different formulations:

1. Ad-hoc
2. Combinatorially
3. Geometrically
4. Computationally, using Julia

• Wishlist: Efficient algorithm and Julia implementation of:
∘ minimum biclique cover
∘ spanning hyperplanes of set of directions

Thanks for listening!

	How can we build MIP formulations?
	Approach #1: Ad-hoc formulations
	Approach #2: Combinatorial construction framework
	Approach #3: Geometric construction framework
	Thanks for listening!

