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Motivating example: The transportation problem

e How do | route natural gas from processing facilities (S) to
distribution centers (D) while minimizing transportation costs?

e Network flow problem on a bipartite graph



Motivating example: The transportation problem

e Cost = linear function over flow on each arc (fixed unit costs)
mxin Z E ci,jxi,j

i€S jeD

s.t. Z Xij = Si VieS§
jeD
2 xi,j = d] V] eD
i€S
x; 20 VieS,jeD

e Linear optimization problem (with specialized algorithms)



Motivating example: The transportation problem

e Cost = concave function over flow on each arc (economies of scale)

min 33 D7 f(x)

i€S jeD

s.t. 2 xi,j =Ss; VYies§
jeD
Z xi,j = d] V] eD
ieS
x;j20  VieSjeD

e How do we solve this nonconvex optimization problem?



Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

gr(f) = {(X,f(x)) Tx € D}

gr(f)
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Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

gr(f) = [, f(x)) : x € D}

min Z E fij(xi7)
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Univariate piecewise linear functions

Want to optimize over the graph of a nonconvex function:

gr(f) = [, f(x)) : x € D}

HE}“ E 2 Yij

s.t.

i€S jeD

Z xl-,]- =S YieS§
jeD

Z Xij = d] V] eD
i€S

x>0 YieS,jeD

7l
(XZ',]', I/,/) € gr(fl,,) Vi e S,] eD



Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:
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Nonconvex optimization using mixed-integer programming

1. Write as a disjunctive constraint:

d ) y
xegr(f)zu‘ S'CR" -
i=1 |
| s? gr(f)
2. Introduce integer variables z € Z" | s s
3. Build LP relaxation Q C R"*" so: i g
;]
Proj (QN(R"x Z")) = st
X i=1 U > X

? How do we choose Q7



The right formulation matters!

N | Metric MC CC  DLog , Stencil
4 Mean (s) 1.4 15 0.9 1 0.4
Win 0 0 0! 100

8 Mean (s) 39.3 97.2 12.6 | 2.7
Win 0 0 0 100

Mean (s) | 1370.9 1648.1 35238 24.6

16 Fail 53 66 6 | 0
Win 0 0 0! 80

Mean (s) | 1800.0 1800.0 1499.6 , 1335

32 Fail 80 80 50 | 0
Win 0 0 0! 80

Solve time (in seconds, with CPLEX v12.7.0). Functions have N2 pieces,
fixed network |S| = |D| = 5.

e Advanced Stencil formulation is the fastest on every instance
e >10x speedup on average for medium/large instances

e Previous approaches could not solve 50 of 80 largest instances
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X Not sharp = bad bounds from LP
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What do we want in a MIP formulation?

# 1 Strength How tight is the LP relaxation?

v Sharp = good bounds from LP

gr(f)

V' Ideal = Sharp + ext(Q) C R" x Z’
= strongest possible relaxation!



What do we want in a MIP formulation?

# 2 Size How many additional variables and constraints?

d
x € U S! & exists z € Z" such that (x,z) € Q
i=1
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A (JZC) <b } , where A € R™(+1)
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o m? (# of constraints)



What do we want in a MIP formulation?

# 2 Size How many additional variables and constraints?

d

xe U S < exists z € Z' such that (x,z) € Q
i=1
Q= { (x,2)| A (ch) <b } , where A € R"™<(1+7)

e How big is...

o 1?7 (# of integer variables)
o m? (# of constraints)

e The smaller m* and 7, the quicker to optimize over LP relaxation

*(We really only care about general inequality constraints, we get variable bounds, e.g. x > 0, for free)



What do we want in a MIP formulation?

# 3 Branching How does formulation change in branch-and-bound?
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What do we want in a MIP formulation?

# 3 Branching How does formulation change in branch-and-bound?

gr(f)

Branching with Formulation B
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e Just reason it out by hand!
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Just reason it out by hand!

Simple example:
MAX={(x,y)€le><IR L<x< U,yzmax{O,w~x+b}}

MAX = Relu activation unit in trained neural network

Big-M formulation:

y+L-z)<w-x+b<y
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(x,y,2) € [L, U] Xx Ry X {0,1}



Ad-hoc formulations for trained neural networks

Just reason it out by hand!

Simple example:

MAX={(x,y)€le><IR LSxSU,y=max{O,w~x+b}}

MAX = Relu activation unit in trained neural network

Big-M formulation:

y+L-z)<w-x+b<y
y<Uz
(x,y,2) € [L, U] Xx Ry X {0,1}

Not ideal or sharp



Approach #2: Combinatorial construction framework



Univariate piecewise linear functions

e Introduce A; variable for each breakpoint v’
d+1
(x,y) € gr(f) < (x,y) = I, v'A; and A is SOS2
i=1
e Ais SOS2 if: [Beale 1970, 1976]

1. they are convex multipliers (A € A% = unit simplex)
2. support(A) € {j,j + 1} for some j



Univariate piecewise linear functions

e Introduce A; variable for each breakpoint v’
d+1
(x,y) € gr(f) < (x,y) = I, v'A; and A is SOS2
i=1
e Ais SOS2 if: [Beale 1970, 1976]

1. they are convex multipliers (A € A% = unit simplex)
2. support(A) € {j,j + 1} for some j



Univariate piecewise linear functions

e Introduce A; variable for each breakpoint v’

d+1

d
(x,y)eUSi (x,y) = Ev% and)\eUP(zz+1})
i=1 i=1

P(T) = {A € A™! : support(A) C T} (face of the simplex)



The SOS2 constraint

d

AE U P({i, i+ 1}) P({2,3})

i=1

1. Strip away problem data (values of )

2. Formulate the SOS2 constraint on A over the unit simplex A+1

3. Apply linear transformation (x,y) = Zf:ll v,

P(T) = {A € A1 support(A) C T}(face of the simplex)



A combinatorial way to build formulations
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A combinatorial way to build formulations

conflict graph

2\

— L8P P

PR ~
L+As<l-z 2= =
/\g SZl ~ @.- " i
3 . sm==z .
Seamatel o La="
M+A,<1-2 — biclique cover

A+ A5z
(A,2) € A5 x{0,1§




Independent branching formulations
e Conflict graph: Z° = ([n], E), where
E = {{u,0} € [n]? : {u,0} & T' for each i
e Biclique cover for Z°¢: {(A/, Bj)}]t‘z1 where E = U]t.zl(Af x BJ)
Theorem (H. and Vielma 2016)

If an independent branching formulation exists® for
UL, P(T, then

M A<z, DA <1-z, z€{0,1) Vje[
veAl veB

is an ideal formulation for U?zl P(T?) if and only if {(A/, Bf)}]t.:l
is a biclique cover for Z°.



Bivariate piecewise linear functions




Stencil formulation for bivariate functions

e Aggregated SOS2 along x direction
e Separated edges between vertices that are “far apart” in x direction

* Needs [log, (# breakpoints in x direction)] levels (variables)




Stencil formulation for bivariate functions

e Aggregated SOS2 along y direction
e Separated edges between vertices that are “far apart” in y direction

* Needs [log, (# breakpoints in y direction)] levels (variables)




Stencil formulation for bivariate functions

e Separate all edges along diagonal lines

e Can aggregate diagonal lines that are “far apart”

* Needs 3 levels (variables)
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Stencil formulation for bivariate functions

Separate all edges along anti-diagonal lines

Can aggregate anti-diagonal lines that are “far apart”

Needs 3 levels (variables)

O @ v v, (G Q

5(\ )!BQ




A combinatorial way to build formulations

e How do we do this automatically?

e Especially important for more unstructured constraints:




A combinatorial way to build formulations

How do we do this automatically?

Simple MIP formulation for minimum biclique cover

Implemented in PiecewiseLinearOpt. j1l to make stencil
formulation “smaller”

Unfortunately, it doesn't scale
Wishlist:

1. Practically efficient algorithm for minimum biclique cover...
2. ...and an implementation in Julia
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The embedding approach

Two ingredients:

1. The sets .7 = (Ti - [Tl])?zl (correspond to faces of simplex; not in (x,z)-space!)
2. Unique codes H = (/' )?:1 C IR” (also hole-free, in convex position)

Build embedding:

1 2 d
Em(7 ,H) = (P(/IT1 )) U (P(,sz )) U---uU (P(/IT, ))



The embedding approach

Two ingredients:
1. The sets y = (TI - [7’1])?:1 (correspond to faces of simplex; not in (x,z)-space!)
2. Unique COdeS H = (/1/)?:1 - Rr (also hole-free, in convex position)

Proposition (Vielma 2017)

Conv(Em(7,H)) is an ideal formulation. Conversely, any non-
extended ideal formulation implies the existence of some corre-
sponding .7~ and H.



Geometric formulation construction

Theorem (H. and Vielma 2017a)
If 7 is path connected and H is in convex position, then

Conv(Em(7, H)) is

= sweT?

n n
E min{b-/"}A, <b-z < E max{b-/1"}A, VbeB
7=l s:wweT® =1

(A, z) € A" x aff(H),

where B contains normal directions to all hyperplanes spanned
by C = {/1’ —h:T'NT! # @} in span(C).



Geometric formulation construction

Theorem (H. and Vielma 2017a)

If 7 is path connected and H is in convex position, then
Conv(Em(7, H)) is

me{b YA, <b- z<2m€aT>§{b I"IA, VYbeB
(A, z) € A" x aff(H),

where B contains normal directions to all hyperplanes spanned
by C = {I/ =1 : T'n T/ # @} in span(C).

Crucial points:
1. # variables = # of components of codes in H

2. # constraints = 2 x(# hyperplanes)



Geometric formulation construction

2

3

log, (d)

1. Ambient space R = logz(d) variables

21



Geometric formulation construction

2

23
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Geometric formulation construction

22

C = {hz’+1 _ hi}c'l_l
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Geometric formulation construction

22

23

log,(d)
i=1

C = {ei}



Geometric formulation construction

2

23

B — normal directions to hyperplanes spanned by C



Geometric formulation construction

22

23

B = fel]



Geometric formulation construction

22

B = fel]

2. directions in C are axis-aligned = 210g2(d) constraints



Interlude: Modeling tools

Here's the math (d = 8):

min 3} Y} fij(x;)

i€S jeD

s.t. E Xjj =i Vie§S
jeD
E xi,j = d] V] eD
i€S

%20 ViesS,jeD



Interlude: Modeling tools

Here's the math (d = 8):
x>o ZIES Z]ED i

s.t. EjeD xjj=s; Yi€S
Vs Xij=d VjeD
(xi,j,zi,]-) = E::l v{fj/l;j
A+ A7 4208 4207 4307 +317 + 4/19 <z

A+ A5 4207 4207 1307 4307 + 4Ag + 40y > 2

AT AT AT+ AT w20l v 20 <2

A+ 20 427 + AY + 207 + 205 + 208 > 2]

AT AT AT+ 2 <20 < AT+ AT+ AT+ AY Y
(AM,z4) e A° x {0,1,2,3,4} x {0,1,2} x {0,1}

Now turn this into code.

VieS,jeD
VieS,jeD
VieS,jeD
VieS,jeD
VieS,jeD
VieS,jeD
VieS,jeD



Interlude: Modeling tools

using JuMP, PiecewiselLinearOpt

model = Model()

Ovariable(model, x[i in S, j in D] >= 0)
for j in D

Qconstraint(model, sum(x[i,j] for i in S) == d[j])
end
for i in 8

Q@constraint(model, sum(x[i,j] for j in D) == s[i])
end

for i in 8, j in D
z[i,j] = piecewiselinear(model, x[i,jl, t[i,j],
-~ f[i,j], method=:ZigZag)

end

@objective(model, Min, sum(z))

solve(model)



Building ideal formulations computationally

e Wishlist:
1. Practically efficient algorithm for spanning hyperplanes...
2. ...and a Julia implementation

Proposition (Vielma 2017)

Conv(Em(.7, H)) is an ideal formulation. Conversely, any non-
extended ideal formulation implies the existence of some corre-

sponding .7~ and H.

e Key point: Compute convex hull for an ideal formulation!

e Instead of computing spanning hyperplanes directly...use Julia!



Building ideal formulations computationally

e Tower puzzle (Juan Pablo Vielma and Austin Herrling): place
integers on rectangular grid, subject to “vision number” constraints

e Which formulation for “vision number” constraints? Compute it!

using CDDLib, Polyhedra

vertices = compute_vision_numbers(idx)

points = SimpleVRepresentation(vertices)

poly = polyhedron(points, CDDLibrary(:exact))
removehredundancy! (poly)

ineq = SimpleHRepresentation(poly) #ineq.A, ineq.b



Building intuition with computational tools

e What if | want a generic ideal formulation? Compute examples!
o Generate some data and turn this...

m = Model()

@variable(m, 1[i] <= x[i=1:d] <= ul[il)
Qvariable(m, y >= 0)

@variable(m, z0 >= 0)

@variable(m, zl1 >= 0)

Q@variable(m, x0[1:d])

Q@variable(m, y0)

@variable(m, x1[1:d4])

Q@variable(m, y1 >= 0)

O@constraint(m, [i=1:d], x[i] == x0[i] + x1[il)
Qconstraint(m, y == y0 + y1)
@constraint(m, 1 == z0 + z1)
Qconstraint(m, yO == 0)

@constraint(m, dot(w,x0) + b <= 0)
@constraint(m, [i=1:d], x0[i] >= 1[i]*z1)
@constraint(m, [i=1:d], x0[i] <= ul[il*z1)
Qconstraint(m, yl == dot(w,x1) + b)
@constraint(m, [i=1:d], x1[i] >= 1[i]*=z0)
Oconstraint(m, [i=1:d], x1[i] <= u[il*z0)
poly = polyhedron(m, CDDLibrary(:exact))
P = eliminate(poly, [eliminate_vars;])
removehredundancy! (P)



Building intuition with computational tools

e What if | want a generic ideal formulation? Compute examples!

e __into this...

-1 x1+0x2+0x3+-1y+-39z<=4
-1 x1+2x2+0x3+-1y+-9z<=20
1 x1+-2x2+3x3+1y+50z<=51
1x1+-2x2+0x3+1y+-72z<=21
0x_1+-2x2+3x3+1y+39z<=145
0x1+-2x2+0x3+1y+-182z<=15
1x1+0x2+3x3+1y+20z<=237
0x1+0x2+3x3+1y+9z<=31

1x1+0x2+0x3+1y+-37Tz<=7
0x1+0x2+0x3+1y+-48 2z <=1
0x1+2x2+0x3+-1y+-202z<=15
0x1+0x2+0x3+-1y+-502z<=-1
1x1+0x2+0x3+0y+0z<=6

0x1+0x2+1x3+0y+0z<=10

-1x1+0x2+0x3+0y+0z<=5
0x1+1x2+0x3+0y+0z<=328
0x1+-1x2+0x3+0y+0z<=7
0x1+0x2+0x3+-1y+0z<=0
-1 x1+2x2+-3x3+-1y+0z<=-2



Building intuition with computational tools

e What if | want a generic ideal formulation? Compute examples!
e ..and then eventually this:

Proposition (Huchette 2018)

An ideal formulation for MAX is:

y>w-x+b

Yy < Ewixi— EwZLl(l —Z) ar [b+ Ewilli

z VIC[d]
i€l i€l igl

y > Zwixi— Zwiui(l -2)+|b+ sz’Li]Z VI C [d]

iel iel igl
(x,y,2) € [L, U] X Ryo x {0, 1}.




Conclusion

e Choice of formulation can greatly affect performance
e Many ways to build different formulations:

1. Ad-hoc

2. Combinatorially

3. Geometrically
4. Computationally, using Julia

e Wishlist: Efficient algorithm and Julia implementation of:

o minimum biclique cover
o spanning hyperplanes of set of directions
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