
Exploiting Low-Rank Structure in Semide�nite Programming by

Approximate Operator Splitting

Mario Souto, Joaquim D. Garcia and Álvaro Veiga

June 26, 2018



Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Introduction 2



Semide�nite Programming

I Primal:

minimize
X∈Sn

tr(CX)

subject to tr(AiX) = bi, i = 1, . . . ,m,

X � 0,

I Dual:

maximize
y∈Rm

bT y

subject to
m∑
i=1

yiAi � C.

I Problem data:

o A1, . . . , Ap, C ∈ Sn;

o b1, . . . , bm ∈ R.

Introduction 3



Semide�nite Programming - General form

I Primal:

minimize
X∈Sn

tr(CX)

subject to A(X) = b,

G(X) ≤ h,
X � 0.

I Dual:

maximize
y′∈Rm,y′′∈Rp

bT y′ + hT y′′

subject to A∗(y′) + G∗(y′′) � C,
y′′ ≤ 0.

I Where:

o A(X) = [tr(A1X), ..., tr(AmX)]T ;

o b = [b1, . . . , bm]T .

Introduction 4



Why SDP matters?

I Subsumes most of convex optimization problems;

Semidefinite	
Programming	

	
	
	
	
	
	
	

SOCP													LP																			QP	

Logdet	
	
	

Exponen6al	
cone	

Geometric	
programming	

Convex	op6miza6on	

I Several problems of interest lie in the SDP family;

I Establishes tight convex relaxations for several nonconvex problems.

Introduction 5



Why SDP matters?

I Subsumes most of convex optimization problems;

Semidefinite	
Programming	

	
	
	
	
	
	
	

SOCP													LP																			QP	

Logdet	
	
	

Exponen6al	
cone	

Geometric	
programming	

Convex	op6miza6on	

I Several problems of interest lie in the SDP family;

I Establishes tight convex relaxations for several nonconvex problems.

Introduction 5



Why SDP matters?

I Subsumes most of convex optimization problems;

Semidefinite	
Programming	

	
	
	
	
	
	
	

SOCP													LP																			QP	

Logdet	
	
	

Exponen6al	
cone	

Geometric	
programming	

Convex	op6miza6on	

I Several problems of interest lie in the SDP family;

I Establishes tight convex relaxations for several nonconvex problems.

Introduction 5



Applications

I Control problems;

I Robust structural design (e.g. truss topology);

I Eigenvalue optimization problems;

I Relaxations for combinatorial problems (e.g. Max-Cut, graph coloring,
traveling salesman, Max-Sat, . . . );

I Optimal power �ow relaxation;

I Machine Learning (matrix completion, robust PCA, kernel learning).

Introduction 6



Why isn't SDP widely used?

I Problem size grows very fast (quadratically on matrix side);

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modelling frameworks (JuMP.jl, cvxpy, Convex.jl);

I State-of-the-art solvers are yet unable to solve large SDP problems.

Introduction 7



Why isn't SDP widely used?

I Problem size grows very fast (quadratically on matrix side);

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modelling frameworks (JuMP.jl, cvxpy, Convex.jl);

I State-of-the-art solvers are yet unable to solve large SDP problems.

Introduction 7



Why isn't SDP widely used?

I Problem size grows very fast (quadratically on matrix side);

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modelling frameworks (JuMP.jl, cvxpy, Convex.jl);

I State-of-the-art solvers are yet unable to solve large SDP problems.

Introduction 7



Why isn't SDP widely used?

I Problem size grows very fast (quadratically on matrix side);

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modelling frameworks (JuMP.jl, cvxpy, Convex.jl);

I State-of-the-art solvers are yet unable to solve large SDP problems.

Introduction 7



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

Introduction 8



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

Introduction 8



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

Introduction 8



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

Introduction 8



Goals

I Propose a novel �rst-order method for solving SDPs:

o Based on the primal-dual hybrid gradient,

o Providing both optimal primal and dual variables,

o Admits inequalities without the use of slack variables.

I Exploit the low-rank structure within the convex optimization framework;

I Make available an open source SDP solver, called ProxSDP.

Introduction 9



Goals

I Propose a novel �rst-order method for solving SDPs:

o Based on the primal-dual hybrid gradient,

o Providing both optimal primal and dual variables,

o Admits inequalities without the use of slack variables.

I Exploit the low-rank structure within the convex optimization framework;

I Make available an open source SDP solver, called ProxSDP.

Introduction 9



Goals

I Propose a novel �rst-order method for solving SDPs:

o Based on the primal-dual hybrid gradient,

o Providing both optimal primal and dual variables,

o Admits inequalities without the use of slack variables.

I Exploit the low-rank structure within the convex optimization framework;

I Make available an open source SDP solver, called ProxSDP.

Introduction 9



Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Algorithm 10



Algorithm

I The SDP problem can be solved by a Proximal Point Algorithm
(Rockafellar 1976):

I More speci�cally, a particular case of the Primal-Dual Hybrid Gradient
(Chambolle-Pock 2010):

I The resulting algorithm PD-SDP has a convergence rate of O(1/N),
optimal for nonsmooth problems (Nesterov 2004).

Algorithm 11



PD-SDP

Algorithm PD-SDP

Given: M, b ∈ Rp, h ∈ Rq and C ∈ Sn.

while εkcomb > εtol do

Xk+1 ← projSn+
(Xk − α(M∗(yk) + C))

yk+1/2← yk + αM(2Xk+1 −Xk)

yk+1 ← yk+1/2 − αproj =b
≤h

(yk+1/2/α)

end while

return (Xk+1, yk+1)

I Spectral decomposition + Matrix multiplication + Truncations

Algorithm 12



Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Exploiting low-rank structure 13



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3);

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

Exploiting low-rank structure 14



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3);

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

Exploiting low-rank structure 14



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3);

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

Exploiting low-rank structure 14



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3) due to
spectral decomposition;

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

Exploiting low-rank structure 15



Low-rank approximation

I Truncated projection onto the positive semide�nite cone:

projSn+
(X, r) =

r∑
i=1

max{0, λi}uiu
T
i .

I The approximation error can be expressed as the sum of the eigenvalues
that were left out by the truncated projection
(Eckart�Young�Mirsky theorem 1936)∥∥∥projSn+(X)− projSn+

(X, r)
∥∥∥2
F
=

n∑
i=r+1

max{λi, 0} ≤ (n− r)max{λr, 0}.

I The approximate �xed-point iteration do converge as long as the error
component is summable (Eckstein-Bertsekas 1992)

Exploiting low-rank structure 16



LR-PD-SDP

Algorithm LR-PD-SDP

Given: M, b ∈ Rp, h ∈ Rq, C ∈ Sn and r = 1.

while (n− r)λr > εtol do

while εkcomb > εtol and ε
k
comb < εk−`

comb
do

Xk+1 ← projSn+
(Xk − α(M∗(yk) + C), r)

yk+1/2← yk + αM(2Xk+1 −Xk)

yk+1 ← yk+1/2 − αproj =b
≤h

(yk+1/2/α)

end while

r ← 2 r

end while

return (Xk+1, yk+1)

Exploiting low-rank structure 17



Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

SDP solver 18



ProxSDP

I Open source solver developed in
the Julia language;

I Solves general SDP problems
(currently can be called from
JuMP.jl);

I Fast performance for problems with
low-rank structure;

I Provides both optimal primal and
dual solutions.

SDP solver 19



Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Case studies 20



Massive MIMO

I Binary Multiple Input Multiple Output (MIMO):

y = Hx+ ε,

o Transmitted symbols x ∈ {−1,+1}n;
o Received signal y ∈ Rm;
o Matrix of channel coe�cients H ∈ Rm×n;
o Additive Gaussian noise ε ∈ Rm with variance σ2.

Case studies 21



MIMO detection SDR

I Write binary constraints using the SD relaxation

I Resulting formulation:

minimize
X∈Sn+1

+

tr(WX)

subject to diag(X) = 1,

X � 0,

Xn+1,n+1 = 1,

− 1 ≤ X ≤ 1,

rank(X) = 1.

I De-noising is exact if signal to noise ratio is su�ciently large
(Ottersten-Jalden 2006).

Case studies 22



MIMO experiments

Table: MIMO detection with high SNR.

n m p CSDP SCS LR-PD-SDP

100 101 10201 114.3 1.6 0.3

200 201 40401 timeout 8.9 1.3

300 301 90601 timeout 39.6 3.1

400 401 160801 timeout 101 6.1

500 501 251001 timeout 136.1 8.8

Case studies 23



Graph equipartition problem from SDPLIB

n Rank Instance SCS CSDP PD-SDP LR-PD-SDP

124 4 gpp124-1 29.8 0.6 8.4 0.6

124 4 gpp124-2 11.1 0.5 6.6 0.5

124 6 gpp124-3 9.3 0.6 5.3 0.5

124 6 gpp124-4 13.5 0.6 18.4 0.8
250 5 gpp250-1 155.6 2.4 32.2 2.6
250 7 gpp250-2 76.9 2.4 23.7 2.7
250 8 gpp250-3 61.8 2.2 29.3 3.5
250 8 gpp250-4 70.5 2.3 40.3 2.5
500 7 gpp500-1 timeout 25.9 150.2 9.7

500 8 gpp500-2 634.2 22.3 156.8 9.5

500 11 gpp500-3 405.37 16.4 117.2 11.9

500 13 gpp500-4 429.7 13.4 129.4 14.4

801 31 equalG11 timeout 81.1 timeout 29.4

1001 16 equalG51 timeout 164.6 timeout 55.6

Table: Comparison of convergence time, in seconds, for SDPLIB's graph equipartition
problem instances.

Case studies 24



Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Conclusion 25



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is e�ciently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of low-rank recovered solution;

o Combine proposed method with chordal sparsity techniques;

o Represent other cones;

Conclusion 26



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is e�ciently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of low-rank recovered solution;

o Combine proposed method with chordal sparsity techniques;

o Represent other cones;

Conclusion 26



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is e�ciently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of low-rank recovered solution;

o Combine proposed method with chordal sparsity techniques;

o Represent other cones;

Conclusion 26



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is e�ciently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of low-rank recovered solution;

o Combine proposed method with chordal sparsity techniques;

o Represent other cones;

Conclusion 26



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is e�ciently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of low-rank recovered solution;

o Combine proposed method with chordal sparsity techniques;

o Represent other cones;

Conclusion 26



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is e�ciently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of low-rank recovered solution;

o Combine proposed method with chordal sparsity techniques;

o Represent other cones;

Conclusion 26



Conclusion 27


	Introduction
	Algorithm
	Exploiting low-rank structure
	SDP solver
	Case studies
	Conclusion

