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Semidefinite Programming

» Primal:
minimize  tr(CX)
XGSTI
subject to tr(A;X)=1b;, i=1,...
X =0,
» Dual:

_ T
maximize by
yeR™

subject to ZyiAi <C.
i=1

» Problem data:

0 Ai,...,Ap,C €S

o bi,...,b;m €R.
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Semidefinite Programming - General form

» Primal:
minimize  tr(CX)
Xesn
subject to  A(X) = b,
G(X) < h,
X >0
» Dual:
‘maximize by + Ty
y' €ER™ y!! ERP
subject to A(W)+G" (") =C,
y// <0.
» Where:

o AX) = [tr(A1X), ..., tr(A, X)]T;
ob=1[b1,...,bm]T.
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Why SDP matters?

» Subsumes most of convex optimization problems;
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Why SDP matters?

» Subsumes most of convex optimization problems;

Convex optimization
Semidefinite

Programming

Geometric

Logdet programming

Exponential
cone

» Several problems of interest lie in the SDP family;

» Establishes tight convex relaxations for several nonconvex problems.
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Applications

» Control problems;

» Robust structural design (e.g. truss topology);

> Eigenvalue optimization problems;

> Relaxations for combinatorial problems (e.g. Max-Cut, graph coloring,
traveling salesman, Max-Sat, ... );

» Optimal power flow relaxation;

» Machine Learning (matrix completion, robust PCA, kernel learning).
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Why isn’t SDP widely used?

» Problem size grows very fast (quadratically on matrix side);
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Why isn’t SDP widely used?

» Problem size grows very fast (quadratically on matrix side);

» Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

» Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modelling frameworks (JuMP.jl, cvxpy, Convex.jl);

> State-of-the-art solvers are yet unable to solve large SDP problems.
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Motivation - Low-rank structure

> Any SDP with m constraints admits a solution with rank at most v2m
(Barvinok-Pataki 1995/98);
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Motivation - Low-rank structure

> Any SDP with m constraints admits a solution with rank at most v2m
(Barvinok-Pataki 1995/98);

» In practice, several SDP problems admits even lower rank solutions;

» Interior points methods frequently compute the full rank solution;

» Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = VTV where V € R¥*™ and k is the target rank.
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Goals

» Propose a novel first-order method for solving SDPs:

o Based on the primal-dual hybrid gradient,
o Providing both optimal primal and dual variables,

o Admits inequalities without the use of slack variables.
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Goals

» Propose a novel first-order method for solving SDPs:

o Based on the primal-dual hybrid gradient,
o Providing both optimal primal and dual variables,
o Admits inequalities without the use of slack variables.

» Exploit the low-rank structure within the convex optimization framework;

» Make available an open source SDP solver, called ProxSDP.
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Algorithm

» The SDP problem can be solved by a Proximal Point Algorithm
(Rockafellar 1976):

> More specifically, a particular case of the Primal-Dual Hybrid Gradient
(Chambolle-Pock 2010):

» The resulting algorithm PD-SDP has a convergence rate of O(1/N),
optimal for nonsmooth problems (Nesterov 2004).
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PD-SDP

Algorithm PD-SDP

Given: M, beRP, heR?and C € S™.
while €&, > e do
XF = projg, (X* — a(M* () + ©))
yk+1/2<_ yk 4 aM(ZXk-H _ Xk)

k41 k+1/2

v eyt —aprojy (y"12 a)

end while

return (X*F1 oFH)

» Spectral decomposition + Matrix multiplication 4+ Truncations

Algorithm
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Computational bottleneck

> The computational complexity of each iteration of PD-SDP is O(n?);
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Computational bottleneck

> The computational complexity of each iteration of PD-SDP is O(n?);

» The spectral decomposition can be prohibitive even for medium scale
problems;

> Can be reduced to O(n?r), if one knows the target rank r a priori to each
iteration.
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Computational bottleneck

> The computational complexity of each iteration of PD-SDP is O(n?) due to
spectral decomposition;

» The spectral decomposition can be prohibitive even for medium scale
problems;

> Can be reduced to O(n?r), i-oneknows-the-targetrank+—a-priori-to-cach
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Low-rank approximation

» Truncated projection onto the positive semidefinite cone:

pI’O_an (X,r) Zmax{() i Yuiuy

» The approximation error can be expressed as the sum of the eigenvalues
that were left out by the truncated projection
(Eckart-Young—Mirsky theorem 1936)

2 n
Hprojsi (X) - projsi (X, r)HF = Z max{\;,0} < (n —r) max{\,,0}.

i=r+1

» The approximate fixed-point iteration do converge as long as the error
component is summable (Eckstein-Bertsekas 1992)
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LR-PD-SDP

Algorithm LR-PD-SDP

Given: M, beRP, heRY, CeS"andr=1.
while (n — )\, > €0 do

. k k k—t
while €comb = €tol and €comb < €comb do

X projgn (X* — a(M*(y*) +C), )

yk+1/2<_ yk: +0(M(2Xk+1 _ Xk)

v ey T —aproj o (T2 )

end while
r<2r

end while

return (X*T1 o~
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v

v

v

v

SDP

ProxSDP

Open source solver developed in OOO
the Julia language;

ProxSDP : Proximal Semidefinite Programming Solver

Solves general SDP problems (€ Marto Souko end Joaquin D. Sarcle, 20
(CU rrent|y can be called from “Initializing Prinal-dual Hybrid Gradient method
JUMP' y 1 iter | conb, res | prim. res | dual res

J);

Fast performance for problems with
low-rank structure;

Provides both optimal primal and

Primal objective
Dual objective = -183.6367

dual SO|UtiOﬂS. Duality gap = 167.3684

solver
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Massive MIMO

Example of 4x2 MIMO
(Multiple Input Multiple Output)

"
()
‘ miver with 2

antenna elements

transmission

Transmitter with 4 paths

antenna elements

» Binary Multiple Input Multiple Output (MIMO):
y=Hzx +e¢,
o Transmitted symbols z € {—1,+1}";
o Received signal y € R™;

o Matrix of channel coefficients H € R™*";
o Additive Gaussian noise € € R™ with variance o2.
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MIMO detection SDR

»> Write binary constraints using the SD relaxation

» Resulting formulation:

minimize  tr(IWX)
xestt

subject to  diag(X) =1,

X =0,
Xnt1,n41 =1,
1< X <1,
rank(X) = 1.

> De-noising is exact if signal to noise ratio is sufficiently large
(Ottersten-Jalden 2006).
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Case studies

MIMO experiments

Table: MIMO detection with high SNR.

n m p CSDP SCS LR-PD-SDP
100 | 101 | 10201 114.3 1.6 0.3
200 | 201 | 40401 timeout | 8.9 1.3
300 | 301 | 90601 timeout | 39.6 31
400 | 401 | 160801 | timeout | 101 6.1
500 | 501 | 251001 | timeout | 136.1 | 8.8
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Graph equipartition problem from SDPLIB

n Rank | Instance SCS CSDP | PD-SDP | LR-PD-SDP
124 4 gppl24-1 29.8 0.6 8.4 0.6
124 4 gppl24-2 11.1 0.5 6.6 0.5
124 6 gppl24-3 9.3 0.6 5.3 0.5
124 6 gppl24-4 135 0.6 18.4 0.8
250 5 gpp250-1 155.6 2.4 32.2 2.6
250 7 gpp250-2 76.9 2.4 23.7 2.7
250 8 gpp250-3 61.8 2.2 29.3 35
250 8 gpp250-4 70.5 2.3 40.3 2.5
500 7 gpp500-1 | timeout 25.9 150.2 9.7
500 8 gpp500-2 634.2 22.3 156.8 9.5
500 11 gpp500-3 | 405.37 16.4 117.2 11.9
500 13 gpp500-4 | 429.7 13.4 129.4 14.4
801 31 equalGll | timeout 81.1 timeout 29.4
1001 16 equalG51 | timeout | 164.6 timeout 55.6

Table: Comparison of convergence time, in seconds, for SDPLIB's graph equipartition
problem instances.
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o Primal-dual method for solving SDP;
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» Future ideas:

o Explore properties of low-rank recovered solution;
o Combine proposed method with chordal sparsity techniques;
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