Exploiting Low-Rank Structure in Semidefinite Programming by Approximate Operator Splitting

Mario Souto, Joaquim D. Garcia and Álvaro Veiga

June 26, 2018

Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Semidefinite Programming

► Primal:

$$\begin{array}{ll} \underset{X \in \mathbb{S}^n}{\text{minimize}} & \operatorname{tr}(CX)\\ \text{subject to} & \operatorname{tr}(A_iX) = b_i, \quad i = 1, \dots, m,\\ & X \succeq 0, \end{array}$$

► Dual:

Problem data:

•
$$A_1, \ldots, A_p, C \in \mathbb{S}^n$$
;

o $b_1,\ldots,b_m\in\mathbb{R}$.

Semidefinite Programming - General form

► Primal:

$$\begin{split} \underset{X \in \mathbb{S}^n}{\text{minimize}} & \mbox{tr}(CX) \\ \text{subject to} & \mathcal{A}(X) = b, \\ & \mathcal{G}(X) \leq h, \\ & X \succeq 0. \end{split}$$

► Dual:

► Where:

•
$$\mathcal{A}(X) = [\mathbf{tr}(A_1X), ..., \mathbf{tr}(A_mX)]^T;$$

• $b = [b_1, \dots, b_m]^T.$

Why SDP matters?

Subsumes most of convex optimization problems;

Why SDP matters?

Subsumes most of convex optimization problems;

Several problems of interest lie in the SDP family;

Why SDP matters?

Subsumes most of convex optimization problems;

Several problems of interest lie in the SDP family;

Establishes tight convex relaxations for several nonconvex problems.

Applications

Control problems;

Robust structural design (e.g. truss topology);

Eigenvalue optimization problems;

 Relaxations for combinatorial problems (e.g. Max-Cut, graph coloring, traveling salesman, Max-Sat, ...);

Optimal power flow relaxation;

Machine Learning (matrix completion, robust PCA, kernel learning).

Problem size grows very fast (quadratically on matrix side);

Problem size grows very fast (quadratically on matrix side);

Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

Problem size grows very fast (quadratically on matrix side);

Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modelling frameworks (JuMP.jl, cvxpy, Convex.jl);

Problem size grows very fast (quadratically on matrix side);

Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modelling frameworks (JuMP.jl, cvxpy, Convex.jl);

State-of-the-art solvers are yet unable to solve large SDP problems.

► Any SDP with m constraints admits a solution with rank at most √2m (Barvinok-Pataki 1995/98);

Any SDP with m constraints admits a solution with rank at most $\sqrt{2m}$ (Barvinok-Pataki 1995/98);

In practice, several SDP problems admits even lower rank solutions;

Any SDP with m constraints admits a solution with rank at most $\sqrt{2m}$ (Barvinok-Pataki 1995/98);

▶ In practice, several SDP problems admits even lower rank solutions;

Interior points methods frequently compute the full rank solution;

 Any SDP with m constraints admits a solution with rank at most \sqrt{2m} (Barvinok-Pataki 1995/98);

▶ In practice, several SDP problems admits even lower rank solutions;

- Interior points methods frequently compute the full rank solution;
- Low-rank structure is usually exploited as a matrix factorization (Burer-Monteiro 2003):

 $X = V^{\mathsf{T}}V$ where $V \in \mathbb{R}^{k \times n}$ and k is the target rank.

Goals

Propose a novel first-order method for solving SDPs:

- o Based on the primal-dual hybrid gradient,
- o Providing both optimal primal and dual variables,
- o Admits inequalities without the use of slack variables.

Goals

Propose a novel first-order method for solving SDPs:

- o Based on the primal-dual hybrid gradient,
- o Providing both optimal primal and dual variables,
- o Admits inequalities without the use of slack variables.
- Exploit the low-rank structure within the convex optimization framework;

Goals

Propose a novel first-order method for solving SDPs:

- o Based on the primal-dual hybrid gradient,
- o Providing both optimal primal and dual variables,
- o Admits inequalities without the use of slack variables.
- Exploit the low-rank structure within the convex optimization framework;
- ► Make available an open source SDP solver, called ProxSDP.

Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Algorithm

Algorithm

- The SDP problem can be solved by a Proximal Point Algorithm (Rockafellar 1976):
- More specifically, a particular case of the Primal-Dual Hybrid Gradient (Chambolle-Pock 2010):
- ▶ The resulting algorithm PD-SDP has a convergence rate of O(1/N), optimal for nonsmooth problems (Nesterov 2004).

PD-SDP

Algorithm PD-SDP

$$\begin{split} & \text{Given: } \mathcal{M}, \ b \in \mathbb{R}^p, \ h \in \mathbb{R}^q \ \text{and} \ C \in \mathbb{S}^n. \\ & \text{while} \ \epsilon^k_{\text{comb}} > \epsilon_{\text{tol}} \quad \text{do} \\ & X^{k+1} \ \leftarrow \ \text{proj}_{\mathbb{S}^n_+}(X^k - \alpha(\mathcal{M}^*(y^k) + C)) \\ & y^{k+1/2} \leftarrow y^k + \alpha \mathcal{M}(2X^{k+1} - X^k) \\ & y^{k+1} \ \leftarrow y^{k+1/2} - \alpha \ \text{proj}_{\substack{= b \\ \leq h}}(y^{k+1/2} / \alpha) \end{split}$$

end while

return (X^{k+1}, y^{k+1})

Spectral decomposition + Matrix multiplication + Truncations

Algorithm

Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Exploiting low-rank structure

▶ The computational complexity of each iteration of PD-SDP is $O(n^3)$;

- ▶ The computational complexity of each iteration of PD-SDP is $\mathcal{O}(n^3)$;
- The spectral decomposition can be prohibitive even for medium scale problems;

- ▶ The computational complexity of each iteration of PD-SDP is $\mathcal{O}(n^3)$;
- The spectral decomposition can be prohibitive even for medium scale problems;
- ▶ Can be reduced to $\mathcal{O}(n^2 r)$, if one knows the target rank r a priori to each iteration.

- ▶ The computational complexity of each iteration of PD-SDP is $\mathcal{O}(n^3)$ due to spectral decomposition;
- The spectral decomposition can be prohibitive even for medium scale problems;
- Can be reduced to $\mathcal{O}(n^2 r)$, if one knows the target rank r a priori to each iteration.

Low-rank approximation

Truncated projection onto the positive semidefinite cone:

$$\operatorname{proj}_{\mathbb{S}^n_+}(X,r) = \sum_{i=1}^r \max\{0,\lambda_i\} u_i u_i^T.$$

 The approximation error can be expressed as the sum of the eigenvalues that were left out by the truncated projection (Eckart-Young-Mirsky theorem 1936)

$$\left|\operatorname{proj}_{\mathbb{S}^n_+}(X) - \operatorname{proj}_{\mathbb{S}^n_+}(X, r)\right\|_F^2 = \sum_{i=r+1}^n \max\{\lambda_i, 0\} \le (n-r) \max\{\lambda_r, 0\}.$$

The approximate fixed-point iteration do converge as long as the error component is summable (Eckstein-Bertsekas 1992)

LR-PD-SDP

Algorithm LR-PD-SDP

$$\begin{split} & \text{Given: } \mathcal{M}, \ b \in \mathbb{R}^p, \ h \in \mathbb{R}^q, \ C \in \mathbb{S}^n \ \text{and} \ r = 1. \\ & \text{while} \ (n-r)\lambda_r > \epsilon_{\text{tol}} \quad \text{do} \\ & \text{while} \ \epsilon^k_{\text{comb}} > \epsilon_{\text{tol}} \ \text{and} \ \epsilon^k_{\text{comb}} < \epsilon^{k-\ell}_{\text{comb}} \ \text{do} \\ & X^{k+1} \ \leftarrow \operatorname{proj}_{\mathbb{S}^n_+}(X^k - \alpha(\mathcal{M}^*(y^k) + C), r) \\ & y^{k+1/2} \leftarrow y^k + \alpha \mathcal{M}(2X^{k+1} - X^k) \\ & y^{k+1} \ \leftarrow y^{k+1/2} - \alpha \operatorname{proj}_{\leq h}(y^{k+1/2}/\alpha) \end{split}$$

end while

$$r \leftarrow 2 r$$

end while

Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

SDP solver

ProxSDP

- Open source solver developed in the Julia language;
- Solves general SDP problems (currently can be called from JuMP.jl);
- Fast performance for problems with low-rank structure;
- Provides both optimal primal and dual solutions.

	ProxSDP : Proximal Semidefinite Programming Solver (c) Mario Souto and Joaquim D. Garcia, 2018												
											Beta vers	510	n
1	Initializing Primal-Dual Hybrid Gradient method												
I	iter	I	comb.	res	I	prim.	res	I	dual res	I	rank	I	time (s)
I	1000	I	0.	3300	I	0.2	240	I	0.1060	1	2	I	3.0411
	2000		0.	0604		0.0	455		0.0148				5.0995
	3000		0.	0360		0.0	249		0.0110				7.1585
	4000		0.	0139		0.0	045		0.0094				9.3318
	5000		0.	0022		0.0	007		0.0016				11.6317
	6000		0.	0003		0.0	001		0.0002		8		14.7106
	6106		0.	0002		0.0	001		0.0001		16		15.0490
	Status = solved Elapsed time = 15.05s												
F	Primal objective = -16.2683 Dual objective = -183.6367 Duality gap = 167.3684												

Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Case studies

Massive MIMO

Binary Multiple Input Multiple Output (MIMO):

 $y = Hx + \varepsilon,$

- Transmitted symbols $x \in \{-1, +1\}^n$;
- Received signal $y \in \mathbb{R}^m$;
- Matrix of channel coefficients $H \in \mathbb{R}^{m \times n}$;
- o Additive Gaussian noise $\varepsilon \in \mathbb{R}^m$ with variance σ^2 .

MIMO detection SDR

Write binary constraints using the SD relaxation

Resulting formulation:

$$\begin{array}{ll} \underset{X \in \mathbb{S}^{n+1}_+}{\text{minimize}} & \operatorname{tr}(WX) \\ \text{subject to} & \operatorname{diag}(X) = 1, \\ & X \succeq 0, \\ & X_{n+1,n+1} = 1, \\ & -1 \leq X \leq 1, \\ & \operatorname{rank}(X) = 1. \end{array}$$

 De-noising is exact if signal to noise ratio is sufficiently large (Ottersten-Jalden 2006).

MIMO experiments

Table: MIMO detection with high SNR.

n	m	р	CSDP	SCS	LR-PD-SDP
100	101	10201	114.3	1.6	0.3
200	201	40401	timeout	8.9	1.3
300	301	90601	timeout	39.6	3.1
400	401	160801	timeout	101	6.1
500	501	251001	timeout	136.1	8.8

Graph equipartition problem from SDPLIB

n	Rank	Instance	SCS	CSDP	PD-SDP	LR-PD-SDP
124	4	gpp124-1	29.8	0.6	8.4	0.6
124	4	gpp124-2	11.1	0.5	6.6	0.5
124	6	gpp124-3	9.3	0.6	5.3	0.5
124	6	gpp124-4	13.5	0.6	18.4	0.8
250	5	gpp250-1	155.6	2.4	32.2	2.6
250	7	gpp250-2	76.9	2.4	23.7	2.7
250	8	gpp250-3	61.8	2.2	29.3	3.5
250	8	gpp250-4	70.5	2.3	40.3	2.5
500	7	gpp500-1	timeout	25.9	150.2	9.7
500	8	gpp500-2	634.2	22.3	156.8	9.5
500	11	gpp500-3	405.37	16.4	117.2	11.9
500	13	gpp500-4	429.7	13.4	129.4	14.4
801	31	equa G11	timeout	81.1	timeout	29.4
1001	16	equa G51	timeout	164.6	timeout	55.6

Table: Comparison of convergence time, in seconds, for SDPLIB's graph equipartition problem instances.

Outline

Introduction

Algorithm

Exploiting low-rank structure

SDP solver

Case studies

Conclusion

Achievements:

o Primal-dual method for solving SDP;

Achievements:

- o Primal-dual method for solving SDP;
- o Low-rank structure is efficiently exploited;

Achievements:

- o Primal-dual method for solving SDP;
- o Low-rank structure is efficiently exploited;
- Open-source SDP solver [ProxSDP] is readly available, https://github.com/mariohsouto/ProxSDP.jl

Achievements:

- o Primal-dual method for solving SDP;
- o Low-rank structure is efficiently exploited;
- Open-source SDP solver [ProxSDP] is readly available, https://github.com/mariohsouto/ProxSDP.jl

Future ideas:

o Explore properties of low-rank recovered solution;

Achievements:

- o Primal-dual method for solving SDP;
- o Low-rank structure is efficiently exploited;
- Open-source SDP solver [ProxSDP] is readly available, https://github.com/mariohsouto/ProxSDP.jl
- Future ideas:
 - o Explore properties of low-rank recovered solution;
 - o Combine proposed method with chordal sparsity techniques;

Achievements:

- o Primal-dual method for solving SDP;
- o Low-rank structure is efficiently exploited;
- Open-source SDP solver [ProxSDP] is readly available, https://github.com/mariohsouto/ProxSDP.jl
- Future ideas:
 - o Explore properties of low-rank recovered solution;
 - o Combine proposed method with chordal sparsity techniques;
 - o Represent other cones;