
Automatic reformulation using constraint

bridges

Benôıt Legat (UCL)

June 29, 2018

Université catholique de Louvain (UCL)

Motivation

Consider interval constraints:

@constraint(m, 0 <= 2x + 3y <= 1)

and second order cone (SOC) constraints:

@constraint(m, x'*x <= t^2)

@constraint(m, [t; x] in MOI.SecondOrderCone(length(x)+1))

• Solver A: supports interval constraints and quadratic

constraints

• Solver B: does not supports interval constraints and support

SOC constraints.

What should JuMP do ?

1

Solution 1

Disallow using interval constraints

Issues

• Solver A benefits from knowing more stucture

• Does not work for SOC constraints

2

Solution 2

The user needs to enter the form supported by the solver

Issues

• The user needs to read solvers docs

• Some transformations are not easy, let alone transforming

duals

• Cannot write solver independent code

Similar to MathProgBase

LinearQuadraticModel/ConicModel/NLPModel with JuMP v0.18

traits.

3

Solution 3

Write transformations in JuMP

Issues

• Bloat JuMP code (need to transform duals!)

• Unfair: specific transformations are included and some are not

• Not extensible/distributed

Similar to handling of PSD constraints in JuMP v0.18.

4

Solution 4: Constraint Bridges

• Transparent

• Lightweight

• Complete

• Extensible

5

Transparent

Transparently bridge constraints by adding an MOI layer

JuMP

MOI

Optimizer

JuMP

MOI

Bridge

MOI

Optimizer

Optimizer

6

Lightweight

Transformed on the fly, no copy needed.

MathProgBase bridges: model-wise → need full copy.

JuMP

Add constraint

Is supported ?

Yes

No

Select bridge

Add constraint[s]

Optimizer

7

Complete

If the underlying optimizer fully implements MOI, the bridged

optimizer should too!

Bridges keep indices of created constraints and variables and

implements

• transforming constraint primal and constraint dual,

• deleting the constraint,

• modifying the constraint,

• remove indices of created constraints and variables from

MOI.ListOfVariableIndices, ...

Keep original constraint for gett MOI.ConstraintFunction,

MOI.ConstraintSet, ...

8

Transforming constraint duals

Linear bridge from *-in-S1 to *-in-S2.
Suppose

x ∈ S1 ⇔ Ax ∈ S2 AS1 = S2

Hence

A∗y ∈ S∗1 ⇔ y ∈ S∗2 S∗1 = A∗S∗2

In Lagrangian:

〈Ax , y〉2 = 〈x ,A∗y〉1

9

Extensible

Custom bridges can be added. How do we select bridges ?

Example
Root-Det constraint: t ≤ d

√
det(X), X ∈ Rd×d .

Geometric-Mean constraint: x ≥ 0, t ≤ n
√
x1x2 · · · xn

• Bridge 1: Root-Det → PSD to get eigenvalues and GeoMean

with eigenvalues.

• Bridge 2: GeoMean → Rotated SOC.

• Bridge 3: GeoMean → Power Cone (see Ulf’s talk on

Wednesday).

Which one to choose ?

Select bridge that minimize the number of bridges needed ?

What do to for Bridge 2 and 3 ? Add cost to bridges ?
10

What is our graph ?

Nodes
Each F -in-S constraint types. Need to go beyond MOI’s F and S .

It can by anything for extensibility.

Infinitely many nodes, we need to be lazy!

Edge
Each bridge b defined possible infinitely many edges.

For each F -in-S supported by bridge B: multi-ouput edge between

F -in-S and all added constraint types (A(B,F ,S)).

Given F -in-S , finitely many bridges supporting F -in-S : B(F ,S).

11

Shortest Path Problem

Need to solve

d(F ,S) =

0 if F -in-S are supported by optimizer

1 + minB∈B(F ,S)

∑
(F ′,S ′)∈A(B,F ,S) d(F ′,S ′) otherwise

Shortest path algrithms ?

• Breath-First Search : For edges with cost 1

• Dijkstra : For edges with nonnegative cost

• Bellman-Ford : For edges with any real cost (+ negative

cycles)

Choice: a modified Bellman-Ford algorithm.

12

Classical Bellman-Ford algorithm

• N: set of nodes

• E: set of edges

• d: distance

• b: next node

for _ in 1:length(N)-1:

for each edge u=>v with weight w in E

if d[u] + w < d[v]:

d[v] = d[u] + w

b[v] = u

end

end

end

Complexity O(|N| · |E |)
13

Target constraint types

Invariant: if d(F , S) defined, it is correct.

F -in-S constraint added by user

→ generate C: list of needed new entries in d .

Algorithm 1 recursive add F -in-S

add F -in-S to C
for B ∈ B(F , S) do

for (F ′, S ′) ∈ A(B,F ,S) do

if F ′-in-S ′ not supported and d(F ′, S ′) not defined then

recursive add F ′-in-S ′

end if

end for

end for

14

Modified Bellman-Ford algorithm

changed ← true

while changed do

changed ← false

for F -in-S ∈ C do

for B ∈ B(F ,S) do

u ← 1 +
∑

(F ′,S ′)∈A(B,F ,S) d(F ′,S ′)

if u < d(F , S) then

d(F , S)← u

b(F , S)← B

changed ← true

end if

end for

end for

end while

15

Future work

• Should GeoMean be bridged to RSOC or Power Cone ? Is

adding weights the right solution ?

• Disciplined Convex Programming : Bridge between

NonlinearFunction-in-S and convex constraints.

Issue: cannot determine added constraint types only with

NonlinearFunction type.

16

