Automatic reformulation using constraint bridges

Benoît Legat (UCL)
June 29, 2018

Université catholique de Louvain (UCL)
Motivation

Consider interval constraints:

```julia
@constraint(m, 0 <= 2x + 3y <= 1)
```

and second order cone (SOC) constraints:

```julia
@constraint(m, x'*x <= t^2)
@constraint(m, [t; x] in MOI.SecondOrderCone(length(x)+1))
```

- Solver A: supports interval constraints and quadratic constraints
- Solver B: does not support interval constraints and support SOC constraints.

What should JUMP do?
Solution 1

Disallow using interval constraints

Issues

- Solver A benefits from knowing more structure
- Does not work for SOC constraints
Solution 2

The user needs to enter the form supported by the solver

Issues

- The user needs to read solvers docs
- Some transformations are not easy, let alone transforming duals
- Cannot write solver independent code

Similar to MathProgBase
LinearQuadraticModel/ConicModel/NLPModel with Jump v0.18 traits.
Solution 3

Write transformations in \(\text{JuMP} \)

Issues

- Bloat \(\text{JuMP} \) code (need to transform duals!)
- Unfair: specific transformations are included and some are not
- Not extensible/distributed

Similar to handling of PSD constraints in \(\text{JuMP \ v0.18} \).
Solution 4: Constraint Bridges

- Transparent
- Lightweight
- Complete
- Extensible
Transparently bridge constraints by adding an MOI layer
Lightweight

Transformed *on the fly*, no copy needed.

MathProgBase bridges: model-wise \rightarrow need full copy.

\[\text{Add constraint} \quad \text{Is supported?} \quad \begin{cases} \text{Yes} & \quad \text{Select bridge} \\ \text{No} & \quad \text{Add constraint[s]} \end{cases} \]

\[\text{JuMP} \]
If the underlying optimizer fully implements MOI, the bridged optimizer should too!

Bridges keep indices of created constraints and variables and implements

- transforming constraint primal and constraint dual,
- deleting the constraint,
- modifying the constraint,
- remove indices of created constraints and variables from MOI.ListOfVariableIndices, ...

Keep original constraint for gett MOI.ConstraintFunction, MOI.ConstraintSet, ...
Linear bridge from $*-in-S_1$ to $*-in-S_2$.

Suppose

$$x \in S_1 \iff Ax \in S_2 \quad AS_1 = S_2$$

Hence

$$A^*y \in S_1^* \iff y \in S_2^* \quad S_1^* = A^*S_2^*$$

In Lagrangian:

$$\langle Ax, y \rangle_2 = \langle x, A^*y \rangle_1$$
Custom bridges can be added. How do we select bridges?

Example

Root-Det constraint: \(t \leq \sqrt[d]{\det(X)}, \ X \in \mathbb{R}^{d \times d} \).

Geometric-Mean constraint: \(x \geq 0, \ t \leq \sqrt[n]{x_1x_2\cdots x_n} \).

- Bridge 1: Root-Det → PSD to get eigenvalues and GeoMean with eigenvalues.
- Bridge 2: GeoMean → Rotated SOC.
- Bridge 3: GeoMean → Power Cone (see Ulf’s talk on Wednesday).

Which one to choose?

Select bridge that minimize the number of bridges needed?

What do to for Bridge 2 and 3? Add cost to bridges?
What is our graph?

Nodes
Each F-in-S constraint types. Need to go beyond MOI’s F and S. It can be anything for extensibility.

Infinitely many nodes, we need to be lazy!

Edge
Each bridge b defined possible infinitely many edges.

For each F-in-S supported by bridge B: multi-output edge between F-in-S and all added constraint types ($\mathcal{A}(B, F, S)$).

Given F-in-S, **finitely** many bridges supporting F-in-S: $\mathcal{B}(F, S)$.
Shortest Path Problem

Need to solve

\[d(F, S) = \begin{cases}
0 & \text{if } F\text{-in-}S \text{ are supported by optimizer} \\
1 + \min_{B \in B(F, S)} \sum_{(F', S') \in A(B, F, S)} d(F', S') & \text{otherwise}
\end{cases} \]

Shortest path algorithms?

- Breath-First Search: For edges with cost 1
- Dijkstra: For edges with nonnegative cost
- Bellman-Ford: For edges with any real cost (+ negative cycles)

Choice: a modified *Bellman-Ford algorithm*.
Classical Bellman-Ford algorithm

- \(N \): set of nodes
- \(E \): set of edges
- \(d \): distance
- \(b \): next node

```python
for _ in 1:length(N)-1:
    for each edge \( u \Rightarrow v \) with weight \( w \) in \( E \):
        if \( d[u] + w < d[v] \):
            \( d[v] = d[u] + w \)
            \( b[v] = u \)
    end
end
```

Complexity \(\mathcal{O}(|N| \cdot |E|) \)
Invariant: if $d(F, S)$ defined, it is correct.

F-in-S constraint added by user

→ generate C: list of needed new entries in d.

Algorithm 1 recursive add F-in-S

add F-in-S to C

for $B \in B(F, S)$ do

for $(F', S') \in A(B, F, S)$ do

if F'-in-S' not supported and $d(F', S')$ not defined then

recursive add F'-in-S'

end if

end for

end for
Modified Bellman-Ford algorithm

changed ← true

while changed do
 changed ← false
 for F-in-$S \in C$ do
 for $B \in B(F, S)$ do
 $u \leftarrow 1 + \sum_{(F', S') \in A(B, F, S)} d(F', S')$
 if $u < d(F, S)$ then
 $d(F, S) \leftarrow u$
 $b(F, S) \leftarrow B$
 changed ← true
 end if
 end for
 end for
end while
Future work

- Should GeoMean be bridged to RSOC or Power Cone? Is adding weights the right solution?
- Disciplined Convex Programming: Bridge between NonlinearFunction-in-S and convex constraints. **Issue**: cannot determine added constraint types only with NonlinearFunction type.