Automatic reformulation using constraint
bridges

Benoit Legat (UCL)
June 29, 2018

Université catholique de Louvain (UCL)

IIiHHH!HHHHII

Consider interval constraints:
@constraint(m, 0 <= 2x + 3y <= 1)
and second order cone (SOC) constraints:

Q@constraint(m, x'*x <= t°2)
Qconstraint(m, [t; x] in MOI.SecondOrderCone(length(x)+1))

e Solver A: supports interval constraints and quadratic

constraints

e Solver B: does not supports interval constraints and support
SOC constraints.

What should JUMP do 7

Disallow using interval constraints
Issues

e Solver A benefits from knowing more stucture

e Does not work for SOC constraints

The user needs to enter the form supported by the solver
Issues

e The user needs to read solvers docs

e Some transformations are not easy, let alone transforming
duals

e Cannot write solver independent code

Similar to MathProgBase
LinearQuadraticModel/ConicModel /NLPModel with JUMP v0.18
traits.

Write transformations in JUMP
Issues

e Bloat JUMP code (need to transform duals!)
e Unfair: specific transformations are included and some are not

e Not extensible/distributed

Similar to handling of PSD constraints in JUMP v0.18.

Solution 4: Constraint Bridges

Transparent

Lightweight

Complete

Extensible

Transparently bridge constraints by adding an MOI layer

JUMP JUMP

MOI Optimizer
MOI Bridge

MOl

Optimizer Optimizer

Lightweight

Transformed on the fly, no copy needed.

MathProgBase bridges: model-wise — need full copy.

JUMP
Add constraint| Add constraint[s]
Is supported ? Select bridge
No
Yes
Optimizer

If the underlying optimizer fully implements MOI, the bridged
optimizer should too!

Bridges keep indices of created constraints and variables and
implements

transforming constraint primal and constraint dual,

deleting the constraint,

modifying the constraint,

remove indices of created constraints and variables from
MOI.ListOfVariableIndices, ...

Keep original constraint for gett MOI.ConstraintFunction,
MOI.ConstraintSet, ...

Transforming constraint duals

Linear bridge from *-in-S; to *-in-5S,.
Suppose

X€51<:>AX€52 A51:52
Hence

AyeSioyeS Si=AS

In Lagrangian:
<AXay>2 = <Xa A*}/>1

Extensible

Custom bridges can be added. How do we select bridges ?

Example
Root-Det constraint: t < {¢/det(X), X € R¥*9,

Geometric-Mean constraint: x > 0,t < {/x1X2 - - - X

e Bridge 1: Root-Det — PSD to get eigenvalues and GeoMean

with eigenvalues.
e Bridge 2: GeoMean — Rotated SOC.

e Bridge 3: GeoMean — Power Cone (see Ulf's talk on
Wednesday).

Which one to choose ?
Select bridge that minimize the number of bridges needed 7

What do to for Bridge 2 and 3 7 Add cost to bridges ?
10

What is our graph ?

Nodes
Each F-in-S constraint types. Need to go beyond MOIl's F and S.

It can by anything for extensibility.
Infinitely many nodes, we need to be lazy!

Edge
Each bridge b defined possible infinitely many edges.

For each F-in-S supported by bridge B: multi-ouput edge between
F-in-S and all added constraint types (A(B, F, S)).

Given F-in-S, finitely many bridges supporting F-in-S: B(F,S).

11

Shortest Path Problem

Need to solve

0 if F-in-S are supported by optimizer
d(F, 5) _ pp y op

1+ minges(F,s) 2o (Fr.s)eas,F,s) 4(F',S') otherwise

Shortest path algrithms ?

e Breath-First Search : For edges with cost 1
e Dijkstra : For edges with nonnegative cost

e Bellman-Ford : For edges with any real cost (4 negative
cycles)

Choice: a modified Bellman-Ford algorithm.

12

Classical Bellman-Ford algorithm

N: set of nodes

E: set of edges
d: distance

b: next node

for _ in 1:length(N)-1:
for each edge u=>v with weight w in E
if dfu] + w < d[v]:
dlv] = dfu] + w
blvl = u
end
end
end

Complexity O(|N| - |E|)
13

Target constraint types

Invariant: if d(F,S) defined, it is correct.
F-in-S constraint added by user

— generate C: list of needed new entries in d.

Algorithm 1 recursive add F-in-S
add F-in-S to C
for B € B(F,S) do
for (F',S’) € A(B,F,S) do
if F’-in-S’ not supported and d(F’, S’) not defined then
recursive add F’-in-S’
end if
end for

end for

14

Modified Bellman-Ford algorithm

changed < true
while changed do
changed < false
for F-in-S € C do
for B € B(F,S) do
U143 syeasFs) d(F;S)
if u < d(F,S) then
d(F,S) «u
b(F,S)+ B
changed < true
end if
end for
end for
end while
15

e Should GeoMean be bridged to RSOC or Power Cone 7 Is
adding weights the right solution ?

e Disciplined Convex Programming : Bridge between
NonlinearFunction-in-S and convex constraints.
Issue: cannot determine added constraint types only with
NonlinearFunction type.

16

