
MathOptInterface and JuMP
0.19

Miles Lubin
Google

JuMP-dev 2018

JuMP is great, but how do I …
● add support for a new type of constraint?
● combine NLP constraints with conic constraints?
● delete a constraint or variable?
● test if a solution is feasible?
● modify coefficients in the constraint matrix?
● provide a dual warm-start?
● access the irreducible inconsistent subsystem (IIS) from Gurobi?
● distinguish between a solver that stopped because of the time limit 1) with a

solution and 2) without?
● handle CPXMIP_OPTIMAL_INFEAS?

JuMP’s architecture (0.1 to 0.18)

MathProgBase

MathOptInterface (MOI)
● New problem representation

○ Extensible way to define categories of constraints and modifications

● New interface for attributes
○ Warm starts, IIS

● New status codes
● Nonconsecutive variable and constraint indices

○ For deletion

● Callbacks not defined; they become solver-specific
● Nonlinear optimization mostly unchanged

MOI definition of an optimization problem

Standard functions

And their definitions...

A few sets

And their definitions…

Adding a constraint at the MOI level

addconstraint! returns an index

Deleting variables and constraints

Adding a constraint at the JuMP level

@constraint returns a reference

For example,

ConstraintRef{Model, MOI.ConstraintIndex{MOI.ScalarAffineFunction,
 MOI.LessThan}}

Discussion
There are multiple ways to write down the same constraint. Which should a solver
support? Who should do the work of transforming the problem?

● VectorAffineFunction-in-Zeros vs. multiple
ScalarAffineFunction-in-EqualsTo?

● GemetricMeanCone versus PowerCone versus SecondOrderCone?

MOI provides a single framework in which to experiment with different
representations of a problem at both the model and solver level.

Attributes in MOI

Attributes in JuMP

From MOI to JuMP

Status codes
1. Why did the solver stop? TerminationStatus()
2. Does the solver have vectors to return? ResultCount()
3. What do the result vectors mean? PrimalStatus() and DualStatus()

Example situations with primal-dual solvers

What happened? TerminationSt
atus

Result
Count

PrimalStatus DualStatus

Proved optimality* Success 1 FeasiblePoint FeasiblePoint

Proved primal
infeasible

Success 1 error InfeasibilityC
ertificate

Optimal within relaxed
tolerances

AlmostSuccess 1 FeasiblePoint or
AlmostFeasiblePoint

FeasiblePoint
or
AlmostFeasible
Point

Stall SlowProgress 1 ? ?

* within numerical tolerances or given optimality gap

Example situations with MIP solvers
What happened? TerminationStat

us
ResultCount PrimalStatus DualStatus

Proved optimality Success 1 FeasiblePoint error

Proved infeasible or
unbounded

InfeasibleOrUnb
ounded

0 error error

Proved infeasible InfeasibleNoRes
ult

0 error error

Timed out (no solution) TimeLimit 0 error error

Timed out (with
solution)

TimeLimit 1 FeasiblePoint error

CPXMIP_OPTIMAL_IN
FEAS

Success 1 InfeasiblePoint error

Example situations with NLP solvers
What happened? TerminationStatus Result

Count
PrimalStatus DualStatus

Converged to
feasible point

Success 1 FeasiblePoint FeasiblePoint

Converged to
infeasible point

Success 1 InfeasiblePoint FeasiblePoint
?

Iteration limit IterationLimit 1 ? ?

Diverging NormLimit or
ObjectiveLimit

1 ? ?

Modifications
● x ≤ 1 ⇒ x ≤ 2: set ConstraintSet attribute
● x ≤ 1 ⇒ x ≥ 2: call MOI.transform!
● 2x + y ≤ 10 ⇒ 3x + y ≤ 10: set ConstraintFunction attribute or

call MOI.modify! with ScalarCoefficientChange

The state of MOI
MOI 0.4 released this week. 700+ commits, 400 issues/PRs.

Status of solver wrappers

Released version
supports MOI:

● CSDP
● ECOS
● Ipopt
● Mosek
● OSQP

MOI support in PR or
master branch:

● Cbc
● Clp
● Gurobi
● GLPK
● Xpress
● SDPA
● SCS

Up for grabs:

● AmplNLWriter
● CPLEX
● Knitro
● NLopt
● Pajarito
● SCIP

SemidefiniteOptInterface and LinQuadOptInterface are optional helper layers for
implementing MOI wrappers.

JuMP/MOI
What hasn’t changed:

● Macro syntax
○ Except for norm()

● Variable construction syntax
● Automatic differentiation (ReverseDiffSparse moved into JuMP repo.)

What has changed
● Containers
● Names
● Data structures for AffExpr and QuadExpr
● Interacting with solvers
● Software engineering improvements
● Documenter and docstrings for documentation

JuMP containers
● JuMPDict replaced by Base.Dict
● JuMPArray rewritten, inspired by AxisArrays

Review of JuMP containers

Same applies for @constraint , @expression , @NLconstraint , @NLexpression

Now possible to request a container type

New JuMPArrays

Names
● Variables and constraints now have string names. The set of nonempty

names is unique. You can lookup by name.
● Model scope (model[:x]) still exists, useful for non-scalar variables.

AffExpr and QuadExpr

0.18 0.19

● No duplicates by construction
● Faster on 0.7

The multi-backend problem
JuMP now supports many kinds of problem modifications. Solvers support a
subset of these. We want to keep the solver in memory and pass modifications
efficiently when possible.

JuMP stores the problem data only in MOI

JuMP solver modes
● Direct: the moibackend field is a solver (e.g., Gurobi)

○ This is the mode for using callbacks.

● Manual: the moibackend field is a CachingOptimizer in Manual mode
○ A solver is “attached” or “empty”. When the solver is attached, error if user attempts to make a

modification that the solver doesn’t support.

● Automatic: the moibackend field is a CachingOptimizer in Automatic
mode

○ Solver is attached and emptied when needed without notice.

Are my incremental modifications efficiently passed
to the solver?
Direct: Yes, you’ll always get an error when you make a change that the solver
doesn’t support.

Manual: Yes, you control when the model is reloaded into the solver.

Automatic: Maybe, this will happen silently.

Software engineering improvements
JuMP’s tests no longer depend on a solver!

● MOI lightweight text format for testing model generation
● Mock solvers for testing communication with a solver

Remaining JuMP TODOs for 0.19
● Model printing
● Clean up API

○ Modifications not exposed
○ Names not well exposed
○ Getting/setting the solver

● Documentation
○ Guide for updating from 0.18
○ Update examples

● Callbacks
● Support 0.7

Maintenance plans for JuMP/MPB
MPB and MOI wrappers will co-exist for some time.

We would like to release a version of JuMP 0.18 that’s compatible with Julia 0.7.

Yesterday’s announcement

NumFOCUS will help with:
● Receiving Donations
● Receiving Grants
● Google Summer of Code
● Holding funds for the JuMP-dev workshop
● Facilitating contracts for open-source work

New JuMP branding
● JuMP needs a (new) website
● Low priority: New name for the GitHub organization?

Thanks!

