Introducing Plasmo.jl
A Package for Graph-Based Modeling using JuMP

Jordan Jalving and Victor Zavala

Department of Chemical and Biological Engineering
University of Wisconsin-Madison

JuMP Developers Meetup
June 13th, 2017
Plasmo.jl - What is it?

Platform for Scalable Modeling and Optimization

A Graph-based modeling and optimization framework

Key Features:
- Component models associated with nodes and edges
- Facilitates construction of hierarchical graphs (uses subgraphs)
- Modularization of component models
- Manipulate graph structure for solver interface
- Ease of modeling complex systems
Overview

- Motivation - Complex systems
- Modeling Systems with Components (Graphs)
- Applications
- Design considerations
- Goals right now
Group Research Theme: Complex Systems

Multi-scale systems

Multi-stage stochastic programs

Asynchronous systems

\[
\begin{align*}
 \min_{x_1} f(x_1, x_2, x_3) \\
 \min_{x_2} g(x_1, x_2, x_3) \\
 \min_{x_3} h(x_1, x_2, x_3)
\end{align*}
\]
Types of Problems

- Nonlinear (nonconvex) optimization
- Stochastic programming
- Model predictive control
- Some Applications
 - Energy storage systems
 - Connected infrastructure
 - Microgrids
Challenges with complex physical systems

- Millions of constraints and variables can make the computation intractable
 - Generally apply ad-hoc methods to perform some model reduction
- Millions of system connections makes model instantiation non-trivial
 - Multiple scenarios
 - Solution inspection
- Modeling asynchronicity in large communicating systems is non-trivial
 - Decentralized control
Some existing modeling frameworks

- **Modelica**
 - Components, hierarchies, architectures (highly abstracted)
 - Designed for simulation (Optimica extension does some optimization)
 - Write connectors for coupling (I always found this difficult)

- **gProms**
 - Equation oriented chemical flowsheeting software
 - Custom modeling language
 - Commercial
Revisiting our Goals

- Model encapsulation
- Modularity and reuse
- Navigate solutions to complex optimization problems
- Facilitate modeling of communicating systems
The Power of Abstraction - Graphs

Multiscale Physical Systems

Hierarchical Graphs

Supply Chain Network

(A Graph with Production Nodes and Transport Edges)

Polypropylene Plant

(A Node with a Process Unit Subgraph)

PDH Process Flowsheet

(A Graph with Unit Operation Nodes)

Reactor

(A Node with a Physical Model Subgraph)

Reaction Network

(A Graph with Chemical Species Nodes and Reaction Edges)
Relevant Graph Concepts

Graph Definition

A graph \((G)\) is a finite set \(V(G)\) of vertices (nodes) and a finite family \(E(G)\) of pairs of elements of \(V(G)\) called edges.

A is a subgraph of B

The degree of a node is specific to its graph.
Graph Based Modeling

Plasmo associates model components with nodes and edges

\[
\min_{x_{c(n)} \in X_{c(n)}} f_c(n)(x_{c(n)}, \eta_c(n))
\]
\text{Node } n
\text{Component Model}

\[
\min_{x_{c(e)} \in X_{c(e)}} f_c(e)(x_{c(e)}, \eta_c(e))
\]
\text{Edge } e
\text{Component Model}

\[
\Pi_{e,n} x_{c(n)} + \Pi_{n,e} x_{c(e)} = 0
\]
\text{Coupling Function } n, e

\[
\Pi_{e,n'} x_{c(n')} + \Pi_{n',e} x_{c(e)} = 0
\]
\text{Coupling Function } n', e
Key Features (some in progress):

- Associates models (JuMP Models) and linking information (constraints) with nodes and edges within a graph
- Exploits a subgraph abstraction to enable hierarchies of models (multiple graphs defined on a set of nodes)
- Uses LightGraphs.jl as the graph backend
- Accesses model information on nodes and edges
- Provides interfaces with structured solvers (PIPS, etc...)
```
using Plasmo

graph = PlasmoGraph() #Create a graph
n1 = add_node!(graph)
n2 = add_node!(graph)
n3 = add_node!(graph)
edge1 = add_edge!(graph, n1, n2)
edge2 = add_edge!(graph, n1, n3)

#Set component models
setmodel!(n1, simple_model())
setmodel!(n2, simple_model())
setmodel!(n3, simple_model())

#provide linking information
setcouplingfunction!(graph, edge1, couplenodes)
setcouplingfunction!(graph, edge2, couplenodes)

model = generate_model(graph)
setsolver(model, IpoptSolver())
solve(model)

function couplenodes(m::Model, graph, edge)
    @constraint(m, getconnectedfrom(graph, edge)[:x] == getconnectedto(graph, edge)[:x])
end
```
using Plasmo

Create a graph
m = GraphModel(solver = IpoptSolver())
n1 = add_node!(m)
n2 = add_node!(m)
n3 = add_node!(m)
edge1 = add_edge!(m, n1, n2)
edge2 = add_edge!(m, n1, n3)

Set component models
setmodel!(n1, simple_model())
setmodel!(n2, simple_model())
setmodel!(n3, simple_model())

Link the two models
@linkconstraint(edge1, getconnectedfrom(m, edge1)[:x] == getconnectedto(edge1)[:x])
@linkconstraint(edge2, getconnectedfrom(m, edge2)[:x] == getconnectedto(edge2)[:x])
solve(m) # solve with Ipopt
solve_pips(m, n1, [n2, n3]) # solve with PIPS NLP
\[n \subseteq N: \text{Set of nodes in the gas network (junctions)} \]

\[L: \text{Set of links (pipelines)} \]

\[S \subseteq N: \text{Set of gas supplies} \]

\[D \subseteq N: \text{Set of gas demands} \]

\[L_a \subseteq L: \text{Set of active links (pipelines with compressors)} \]

\[L_p \subseteq L: \text{Set of passive links (pipelines without compressors)} \]
Gas Networks

Mass and Momentum Balances on a Network

\[
\frac{\partial p_\ell(t, x)}{\partial t} + \frac{c^2}{A_\ell} \frac{\partial f_\ell(t, x)}{\partial x} = 0, \quad \ell \in \mathcal{L}
\]

\[
\frac{\partial f_\ell(t, x)}{\partial t} + \frac{2c^2 f_\ell(t, x)}{A_\ell p_\ell(t, x)} \frac{\partial f_\ell(t, x)}{\partial x} - \frac{c^2 f_\ell(t, x)^2}{A_\ell p_\ell(t, x)^2} \frac{\partial p_\ell(t, x)}{\partial x} + A_\ell \frac{\partial p_\ell(t, x)}{\partial x} = -\frac{8c^2 \lambda A_\ell}{\pi^2 D_\ell^5} \frac{f_\ell(t, x)}{p_\ell(t, x)} |f_\ell(t, x)|, \quad \ell \in \mathcal{L}
\]

Compressor Power

\[
P_\ell(t) = c_p \cdot T \cdot f_{in,\ell} \left(\left(\frac{p_{in,\ell}(t) + \Delta p_\ell(t)}{p_{in,\ell}(t)} \right)^{\gamma-1} - 1 \right), \quad \ell \in \mathcal{L}_a
\]

Boundary Conditions

\[
p_\ell(0, t) = p_{in,\ell}(t) + \Delta p_\ell(t), \quad \ell \in \mathcal{L}_a
\]

\[
p_\ell(0, t) = p_{in,\ell}(t), \quad \ell \in \mathcal{L}_p
\]

\[
p_\ell(L_\ell, t) = p_{out,\ell}(t), \quad \ell \in \mathcal{L}
\]

Node Conservation

\[
\sum_{\ell \in \mathcal{L}_n^{rec}} f_{out,\ell}(t) - \sum_{\ell \in \mathcal{L}_n^{snd}} f_{in,\ell}(t) + \sum_{i \in \mathcal{S}_n} g_i(t) - \sum_{j \in \mathcal{D}_n} d_j^{gas}(t) = 0, \quad n \in \mathcal{N}
\]

Supply and Demand

\[
f_{deliver,n}(t) \leq f_{demand,n}(t), \quad n \in \mathcal{D}
\]
The subgraph abstraction allows multiple couplings on the same node.
This can be used to build modular systems and couple them at higher levels.
m = GraphModel()
graph = getgraph(m)
add_subgraph!(graph, power_network)
add_subgraph!(graph, gas_network)
generator = getnode(power_network, :gen)
demand = getnode(gas_network, :demand)
link = add_edge!(graph, generator, demand)
@linkconstraint(link, getconnectedfrom(graph, link)[:Pgend] <=
getconnectedto(graph, link)[:fdeliver])
Key Findings:

- Infrastructure models (graphs) can be developed independently and coupled within larger systems (graphs)
- Illinois Case Study: 7% more gas delivered to generators; 27% revenue increase versus uncoordinated case
- Uncoordinated case simulated by solving successive optimization problems
Our graph abstraction corresponds to the node-based abstraction in multistage stochastic programming.

Component models associated within nodes (scenarios).

Link constraints propagate transition from stage to stage.
Graph models can themselves be embedded as models in nodes or edges.

Simplifies construction of multiple layers in systems.
Future Direction

- Generalize the model interface if possible (strictly uses JuMP)
- Find suitable abstraction for computational workflows
 - Decentralized control
 - Algorithmic strategies (e.g. scheduling and operations)
 - Graph partitioning and model reduction
 - Initialization strategies
- Simulation interfaces
Goals right now

- Finalize physical model abstraction
- Push first version to github
- Figure out a suitable graph communication abstraction