
ProxSDP.jl: New developments on Semidefinite Programming
in Julia/JuMP

Mario Souto and Joaquim Dias Garcia

March 19, 2019



Unique games conjecture

I Unique Games Conjecture: For a large class of problems, even finding an
approximate solution is NP-hard.

I If the UGC is true, for a large class of problems, no polynomial-time
algorithm can be better than ????

2



Unique games conjecture

3



Unique games conjecture

3



Applications

I Control problems;

I Robust structural design (e.g. truss topology);

I Eigenvalue optimization problems;

I Relaxations for combinatorial problems (e.g. Max-Cut, graph coloring,
traveling salesman, Max-Sat, . . . );

I Optimal power flow relaxation;

I Machine Learning (matrix completion, robust PCA, kernel learning).

4



SDP latest news

5



Why isn’t SDP widely used?

I Problem size grows quadratically;

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modeling frameworks (JuMP.jl and others);

I State-of-the-art solvers are yet unable to solve large SDP problems.

6



Why isn’t SDP widely used?

I Problem size grows quadratically;

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modeling frameworks (JuMP.jl and others);

I State-of-the-art solvers are yet unable to solve large SDP problems.

6



Why isn’t SDP widely used?

I Problem size grows quadratically;

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modeling frameworks (JuMP.jl and others);

I State-of-the-art solvers are yet unable to solve large SDP problems.

6



Why isn’t SDP widely used?

I Problem size grows quadratically;

I Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

I Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modeling frameworks (JuMP.jl and others);

I State-of-the-art solvers are yet unable to solve large SDP problems.

6



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

7



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

7



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

7



Motivation - Low-rank structure

I Any SDP with m constraints admits a solution with rank at most
√
2m

(Barvinok-Pataki 1995/98);

I In practice, several SDP problems admits even lower rank solutions;

I Interior points methods frequently compute the full rank solution;

I Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = V ᵀV where V ∈ Rk×n and k is the target rank.

7



Recap from JuMPdev 2018...

https://github.com/mariohsouto/ProxSDP.jl

8

https://github.com/mariohsouto/ProxSDP.jl


Semidefinite Programming

I Primal:

minimize
X∈Sn

tr(CX)

subject to M(X) = b,

X � 0.

where

M(X) =


tr(M1X)
tr(M2X)

...
tr(MmX)

 .

I Problem data: M1, . . . ,Mm, C ∈ Sn, b ∈ Rm and h ∈ Rp.

9



Optimality condition

0 ∈ ∂ tr(CX) + ∂ ISn+(X) +MT (∂ I =b
≤h

(M(X))).

I Introducing an auxiliary variable y ∈ Rp+m:

0 ∈ ∂ tr(CX) + ∂ ISn+(X) +MT (y),

y ∈ ∂ I =b
≤h

(M(X)).

I By definition, y is the dual variable associated with the linear constraints;

I If strong duality holds, any (X∗, y∗) satisfying the inclusion above is the
optimal primal-dual pair.

10



PD-SDP

Algorithm PD-SDP

while εkcomb > εtol do

Xk+1 ← projSn+(X
k − τ(MT (yk) + C)) . Primal step

yk+1/2← yk + σM((1 + θ)Xk+1 − θXk) . Dual step part 1
yk+1 ← yk+1/2 − σ proj=b(y

k+1/2/σ) . Dual step part 2

end while

return
(
Xk+1, yk+1

)

11



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3);

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

12



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3);

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

12



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3);

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

12



Computational bottleneck

I The computational complexity of each iteration of PD-SDP is O(n3);

I The spectral decomposition can be prohibitive even for medium scale
problems;

I Can be reduced to O(n2r), if one knows the target rank r a priori to each
iteration.

13



Low-rank approximation

I Truncated projection onto the positive semidefinite cone:

aprojSn+(X, r) =
r∑
i=1

max{0, λi}uiuTi ,

Sn
+

projSn
+
(X)

X

aprojSn
+
(X, r)

I From (Eckart–Young–Mirsky theorem 1936), the approximation error can
be bounded as∥∥∥projSn+(X)− aprojSn+(X, r)

∥∥∥2
F
≤ (n− r)max{λr, 0}.

14



LR-PD-SDP

Algorithm LR-PD-SDP

while (n− r)λr > ελ do

while εkcomb > εtol and εkcomb < εk−`comb do

Xk+1 ← aprojSn+(X
k − τ(MT (yk) + C), r) . Approx. primal step

yk+1/2← yk + σM((1 + θ)Xk+1 − θXk) . Dual step part 1
yk+1 ← yk+1/2 − σ proj=b(y

k+1/2/σ) . Dual step part 2

end while
r ← 2r . Target-rank update

end while

return (Xk+1, yk+1)

15



Street-fighting optimization

I Algorithmic

– Use adaptive step size for primal and dual update. Use heuristic for balance
residuals;

– Linesearch for selecting over-relaxation parameter as large as possible.

I Computational

– Arpack eig function might fail. Limit the number of iterations, choose
tolerance accordingly;

– Can use MKL if available.

16



Adding other cones and inequalities

Algorithm LR-PD-SDP

while (n− r)λr > ελ do

while εkcomb > εtol and εkcomb < εk−`comb do

Xk+1 ← aprojK(X
k − τ(MT (yk) + C), r) . Approx. primal step

yk+1/2← yk + σM((1 + θ)Xk+1 − θXk) . Dual step part 1
yk+1 ← yk+1/2 − σ proj =b

≤h
(yk+1/2/σ) . Dual step part 2

end while
r ← 2r . Target-rank update

end while

return (Xk+1, yk+1)

17



Graph equipartition problem

n sdplib SCS CSDP MOSEK PD-SDP LR-PD-SDP
124 gpp124-1 1.6 0.4 0.2 0.7 0.9
124 gpp124-2 1.5 0.4 0.3 0.5 0.2
124 gpp124-3 1.6 0.3 0.2 0.6 0.2
124 gpp124-4 1.7 0.5 0.3 0.6 0.2
250 gpp250-1 21.4 2.9 0.9 3.7 1.4
250 gpp250-2 7.8 2.2 1.1 4.1 1.2
250 gpp250-3 12.6 2.1 0.9 3.4 0.9
250 gpp250-4 16.4 2.2 0.9 3.8 0.6
500 gpp500-1 134.2 59.1 8.2 22.7 5.6
500 gpp500-2 97.4 12.2 8.6 21.5 6.1
500 gpp500-3 64.4 12.1 8.9 15.5 4.4
500 gpp500-4 71.4 13.4 8.7 15.4 6.5
801 equalG11 324.2 47.3 32.4 84.3 11.3
1001 equalG51 425.1 98.7 83.4 113.5 22.5

Table: Comparison of running times (seconds) for the SDPLIB’s graph equipartition
problem instances.

18



Sensor network localization

n SCS CSDP MOSEK PD-SDP LR-PD-SDP
50 0.2 0.2 0.1 0.5 0.6
100 0.8 4.5 0.9 6.1 1.6
150 2.6 28.1 3.2 14.4 3.6
200 6.4 89.8 11.2 32.3 6.1
250 12.1 239.2 36.4 52.9 7.9
300 28.7 timeout 85.2 96.6 13.5

Table: Comparison of running times (seconds) for randomized network localization
problem instances.

19



MIMO experiments

n SCS CSDP* MOSEK PD-SDP LR-PD-SDP
100 1.5 1.2 0.1 0.1 0.1
500 277.8 27.4 2.3 3.1 1.1
1000 timeout 97.2 15.6 16.5 4.7
2000 timeout 473.6 117.5 115.9 38.9
3000 timeout timeout 418.2 350.6 122.1
4000 timeout timeout 976.8 906.5 258.3
5000 timeout timeout timeout timeout 472.4

Table: Running times (seconds) for MIMO detection with high SNR.

20



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is efficiently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of intermediate low-rank feasible solution;

o Combine proposed method with chordal sparsity techniques;

o Exploit low rank structure of other problems (SOS, AC relaxation...)

21



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is efficiently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of intermediate low-rank feasible solution;

o Combine proposed method with chordal sparsity techniques;

o Exploit low rank structure of other problems (SOS, AC relaxation...)

21



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is efficiently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of intermediate low-rank feasible solution;

o Combine proposed method with chordal sparsity techniques;

o Exploit low rank structure of other problems (SOS, AC relaxation...)

21



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is efficiently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of intermediate low-rank feasible solution;

o Combine proposed method with chordal sparsity techniques;

o Exploit low rank structure of other problems (SOS, AC relaxation...)

21



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is efficiently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of intermediate low-rank feasible solution;

o Combine proposed method with chordal sparsity techniques;

o Exploit low rank structure of other problems (SOS, AC relaxation...)

21



Conclusion

I Achievements:

o Primal-dual method for solving SDP;

o Low-rank structure is efficiently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

I Future ideas:

o Explore properties of intermediate low-rank feasible solution;

o Combine proposed method with chordal sparsity techniques;

o Exploit low rank structure of other problems (SOS, AC relaxation...)

21


