ProxSDP.jl: New developments on Semidefinite Programming
in Julia/JuMP

Mario Souto and Joaquim Dias Garcia

« LABORATORY OF APPLIED
;‘4( I_AM PS MATHEMATICAL PROGRAMMING AND STATISTICS PUC

RIO

March 19, 2019



Unique games conjecture

» Unique Games Conjecture: For a large class of problems, even finding an
approximate solution is NP-hard.

> If the UGC is true, for a large class of problems, no polynomial-time
algorithm can be better than 7777



Unique games conjecture

First Big Steps Toward Proving the Unique
Games Conjecture

- The latest in a new series of proofs brings theoretical computer scientists

within striking distance of one of the great conjectures of their discipline.
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Applications

Control problems;

Robust structural design (e.g. truss topology);

Eigenvalue optimization problems;

Relaxations for combinatorial problems (e.g. Max-Cut, graph coloring,
traveling salesman, Max-Sat, ...);

Optimal power flow relaxation;

Machine Learning (matrix completion, robust PCA, kernel learning).



SDP latest news

AVClassical Math Problem Gets Pulled Into
the Modern World

- A century ago, the great mathematician David Hilbert posed a probing

question in pure mathematics. A recent advance in optimization theory is

bringing Hilbert’s work into a world of self-driving cars.

A New Tool to Help
Mathematicians Pack

Improvements in how densely spheres and other shapes can be packed
together could lead to advances in materials science, deep space

communication and theoretical physics.

Srl-Quantamacazine
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Why isn’t SDP widely used?

Problem size grows quadratically;

Sparsity is not trivial to be exploited:

o Changing with the adoption of chordal decomposition;

Formulating the problem as a SDP may not always be straightforward:

o Solved by modern modeling frameworks (JuMP.jl and others);

State-of-the-art solvers are yet unable to solve large SDP problems.
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Motivation - Low-rank structure

Any SDP with m constraints admits a solution with rank at most v/2m
(Barvinok-Pataki 1995/98);

In practice, several SDP problems admits even lower rank solutions;

Interior points methods frequently compute the full rank solution;

Low-rank structure is usually exploited as a matrix factorization
(Burer-Monteiro 2003):

X = VTV where V € R¥*™ and k is the target rank.



Recap from JuMPdev 2018...
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https://github.com/mariohsouto/ProxSDP.jl

Semidefinite Programming

> Primal:
minimize  tr(CX)
Xesn

subject to M(X) = b,

X > 0.

where
tl’(M1X)
tl’(MQX)
M(X) = )
tr(MmX)

» Problem data: My,...,M,,,C €S", b€ R™ and h € RP.



Optimality condition

0€0tr(CX)+0 Isn (X) + MT (D I = (M(X))).

<h

» Introducing an auxiliary variable y € RPT™:

0 €0 tr(CX) +0 Isy (X) + M (),
y €0 1= (M(X)).

» By definition, y is the dual variable associated with the linear constraints;

» If strong duality holds, any (X*,y") satisfying the inclusion above is the
optimal primal-dual pair.
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PD-SDP

Algorithm PD-SDP

k
comb

XEH e projg, (X* = 7(MT(4") + C))

while ¢ > €01 do

Yy o M((1 4 0) X — 0XF)
Yty Y2 — oproj_, (Y2 fo)
end while

return (X*H1 gyt

> Primal step

> Dual step part 1
> Dual step part 2

11



Computational bottleneck

» The computational complexity of each iteration of PD-SDP is O(n?);

12



Computational bottleneck

» The computational complexity of each iteration of PD-SDP is O(n?);

» The spectral decomposition can be prohibitive even for medium scale
problems;

12
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» The computational complexity of each iteration of PD-SDP is O(n?);

» The spectral decomposition can be prohibitive even for medium scale
problems;

» Can be reduced to O(n?r), if one knows the target rank r a priori to each
iteration.
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Computational bottleneck

» The computational complexity of each iteration of PD-SDP is O(n?);

» The spectral decomposition can be prohibitive even for medium scale
problems;

> Can be reduced to O(n?r), -oneknows-the-targetrank+—a-priori-to-each
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Low-rank approximation

» Truncated projection onto the positive semidefinite cone:

aprolsn Zmax{o Ai }ul uj ,

» From (Eckart—Young—Mirsky theorem 1936), the approximation error can
be bounded as

2
[prois; (X) — aprojsy (X.7)| < (n — ) max{x,.,0}.

14



LR-PD-SDP

Algorithm LR-PD-SDP

while (n — )\ > ex do
while €& > e and €F < L do

comb

XFH aprojSi (XF —r(MT )+ ), r) > Approx. primal step

Y2 gk L o M((1 4 0)XFH — gXF) > Dual step part 1
YT Y2 oproj_, (vFTY? /o) > Dual step part 2
end while
27 > Target-rank update
end while

return (XF+ Rt
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Street-fighting optimization

> Algorithmic

— Use adaptive step size for primal and dual update. Use heuristic for balance
residuals;

— Linesearch for selecting over-relaxation parameter as large as possible.

» Computational

— Arpack eig function might fail. Limit the number of iterations, choose
tolerance accordingly;

— Can use MKL if available.
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Adding other cones and inequalities

Algorithm LR-PD-SDP

while (n — )\, > ex do

. k—£
while E(Ifomb > €0l and E<I:Comb < €comb do

XM = aproj (XF — 7(MT(y*) + C), 7)
Y2 yF o M((1+0) X — 0X7F)
Y eyt T —oproj o (2 /0)

end while

r<2r

end while

return (X*+1 4R+

> Approx. primal step
> Dual step part 1
> Dual step part 2

> Target-rank update
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Graph equipartition problem

n sdplib SCS | CSDP | MOSEK | PD-SDP | LR-PD-SDP
124 | gppl24-1 1.6 0.4 0.2 0.7 0.9
124 | gppl24-2 15 0.4 0.3 0.5 0.2
124 | gppl24-3 1.6 0.3 0.2 0.6 0.2
124 | gppl24-4 1.7 0.5 0.3 0.6 0.2
250 | gpp250-1 | 21.4 2.9 0.9 3.7 1.4
250 | gpp250-2 7.8 2.2 1.1 4.1 1.2
250 | gpp250-3 | 12.6 21 0.9 3.4 0.9
250 | gpp250-4 | 16.4 2.2 0.9 3.8 0.6
500 | gpp500-1 | 134.2 | 59.1 8.2 22,7 5.6
500 | gpp500-2 | 97.4 12.2 8.6 215 6.1
500 | gpp500-3 | 64.4 121 8.9 15.5 4.4
500 | gpp500-4 | 71.4 13.4 8.7 15.4 6.5
801 | equalGll | 3242 | 473 324 84.3 11.3
1001 | equalG51 | 425.1 | 98.7 83.4 113.5 22.5

Table: Comparison of running times (seconds) for the SDPLIB's graph equipartition
problem instances.
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Sensor network localization

n SCS | CSDP | MOSEK | PD-SDP | LR-PD-SDP
50 0.2 0.2 0.1 0.5 0.6
100 | 0.8 4.5 0.9 6.1 1.6
150 | 2.6 28.1 3.2 14.4 3.6
200 | 6.4 89.8 11.2 323 6.1
250 | 12.1 239.2 36.4 52.9 7.9
300 | 28.7 | timeout 85.2 96.6 13.5

Table: Comparison of running times (seconds) for randomized network localization
problem instances.



MIMO experiments

n SCS CSDP* | MOSEK | PD-SDP | LR-PD-SDP
100 1.5 1.2 0.1 0.1 0.1

500 277.8 27.4 2.3 3.1 1.1
1000 | timeout 97.2 15.6 16.5 4.7
2000 | timeout 473.6 117.5 115.9 38.9
3000 | timeout | timeout 418.2 350.6 122.1
4000 | timeout | timeout 976.8 906.5 258.3
5000 | timeout | timeout | timeout timeout 472.4

Table: Running times (seconds) for MIMO detection with high SNR.
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> Achievements:

o Primal-dual method for solving SDP;
o Low-rank structure is efficiently exploited;

o Open-source SDP solver [ProxSDP] is readly available,
https://github.com/mariohsouto/ProxSDP.jl

» Future ideas:

o Explore properties of intermediate low-rank feasible solution;
o Combine proposed method with chordal sparsity techniques;

o Exploit low rank structure of other problems (SOS, AC relaxation...)
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