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Linear programming (Primal-Dual standard form)

(P) min c'x (D) max bTy
st. Ax =b st. Aly +s =c¢
x >0 s >0

where x e R”, y e R™ s € R”

@ Solved with Simplex or Interior-Point
o Workhorse of
o MILP
e Decomposition (Dantzig-Wolfe & Benders)
o Polyhedral Outer approximations
o Cutting plane methods
]
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Geometric view

(P) min c'x
X .
s.t. Ax=0b min

x>0

Simplex

- Many cheap iterations
- Extreme vertices
(basic points)

Interior-Point

- Few expensive
iterations

- Interior points (x > 0)
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IPM overview

(P) min c¢c"x (D) max bTy
sit. Ax =b st. Aly +s =c

x >0 s >0

KKT optimality conditions:

Ax = b [primal feas.] (1)

ATy +s=c [dual feas] (2)
Vi, x;+-s; =0 [slackness] (3)
x,s >0 (4)

Algorithm (1) (2) 3 x>0 s>0

(primal) Simplex v vV v *
Interior-point v * x>0 s>0

v': at each iteration; *: at optimality only
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IPM overview

Short history of IPMs:
@ The seminal paper [Karmarkar, 1984]

@ [Mehrotra, 1992]: predictor-corrector algorithm
(implemented in most IPM codes)

e Multiple centrality corrections [Gondzio, 1996]
@ Reference textbook [Wright, 1997]
o [Gondzio, 2012]: more recent survey of IPMs

(Some) software for LP/QP:
@ All commercial solvers (CPLEX, GRB, Mosek, Xpress, etc.)
e Open source: CLP, GLPK, OOQP, (PCx), (HOPDM)
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Mehrotra's Predictor-Corrector algorithm

Compute initial point (see [Mehrotra, 1992])
(x°,y°%,s%) with x° > 0,s° > 0

Compute search direction

A 0 O AxT ] [ b— Ax

0 AT 1 || Ay | =] c—ATy—s5s [predictor]
s 0 x| |as" | | —xSe

A 0 0 Ax< [ 0

0o AT | Ay< | = 0 [corrector]
S 0 X | | as< | | ope—axaTase

Update current solution

(x+,y+,s+) — (x,y7s) + a(Aaff + Acc)

Repeat until convergence

Mathieu Tanneau
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Mehrotra's Predictor-Corrector algorithm

Affine-scaling (full)
Affine-scaling (damped)
Corrector

Predictor-corrector step

Figure: Mehrotra's Predictor-Corrector, in x space
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IPMs

Wrap-up

@ LP in standard Primal-Dual form

(P) min c"x (D) max bTy
st. Ax =b st. Aly +s =c
x >0 s >0

@ At each iteration, solve (several) Newton systems of the form

0 AT | Ax &d
A 0 O Ay | = | &
s 0 X As e

@ Polynomial-time algorithm (see [Wright, 1997])
@ Very efficient on large-scale problems
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Newton system

Newton systems of the form

0 AT | Ax €4
A 0 0 : Ay = 5p
S 0 X As fxs

solved multiple times in each iteration, with various right-hand side.

Two ways to make an Interior-Point faster:
@ Reduce the number of iterations (better algorithm)

@ Reduce the time per iteration (better linear algebra)
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Augmented system

Initial Newton system:

0 AT | Ax £y
A 0 0 : Ay = gp
S 0 X As gxs

Substitute As to obtain the Augmented system
-0t AT | [ Ax | [ &—X"%
A 0 Ay | | &
As = X H&s — SAX)
where © := XS~!
:( Left-hand matrix is indefinite (though regularization can be used)

:( Still costly to solve
:) More handy if free variables and/or non-linear terms
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Normal equations

Substitute Ax to obtain the Normal equations

(AOAT)Ay = £, + AO(Eq — X 1ye)
Ax = @(ATA)/ - gd + X_lgxs)
As = X7 Hés — SAX)

1) AGAT is positive-definite
:) Cholesky factorization AOAT = LLT

— specialized Cholesky based on A
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Specialized Cholesky

Unit block-angular matrix

el

Al o Ap

Found in Dantzig-Wolfe decomposition 4+ column-generation

eT01 (A191)T

AGAT = :
6T9R (ARQR)T

A0 -+ Agbg )

— exploit structure to accelerate Cholesky factorization
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Solver overview

https://github.com/ds4dm/Tulip.jl

Main features
@ Homogeneous self-dual algorithm + multiple corrections
@ Upper-bounds handled explicitly
o Algorithm uses abstract linear algebra (A: :AbstractMatrix)
@ Generic sparse Cholesky + specialized for Unit block-angular

@ MathProgBase interface

WIP
@ MOI interface

@ Improved stability & general sparse linear algebra
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Tulip.jl

Netlib instances

Netlib benchmark (https://www.netlib.org/lp/)
@ Small LP instances, some problematic
@ Only consider feasible instances with no free variables
@ No presolve, no crossover, single thread

@ Most solved in < 1s

Results
@ Tulip runs into numerical issues numerical issues, but...

o ...faster than CLP, GLPK, IpOpt on “hard" instances
(hard = solved in > 0.1s by all solvers)
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Tulip.jl
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Column-generation instances

Instances:
@ m = 24,48,96 linking constraints
o N =210 to 21 sub-problems
Each sub-problem solved with Gurobi
@ Same column-generation code
@ Master problem statistics:

o N -+ m constraints
o up to ~ 4—10 x N variables
e ~4—-10 x N X m non-zeros
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Column-generation instances

Solver setup:
@ Barrier algorithm, no cross-over
o No presolve
@ Single thread
@ Tulip: Generic IPM + specialized linear algebra

Computational results:
@ Barrier (almost always) faster than Simplex
e Computing times (for Restricted Master Problem)

o vs Mosek: —33% (total time); —50% (per-iteration time)
o vs Gurobi: —60% (total time); —70% (per-iteration time)
e vs CPLEX: —55% (total time); —45% (per-iteration time)
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Conclusion

Takeaway:
@ IPM solver for linear programming
@ Generic algorithm + specialized linear algebra
@ Possible to beat SOTA solvers

Roadmap:
e MOI interface
@ Numerical stability
e Extension to QP

Open JuMP-related questions:
@ Passing structure information to solver

@ Problem modification
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Questions

Thank you!
https://github.com/ds4dm/Tulip. jl

Questions?

mathieu.tanneau@polymtl.ca
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