Tulip.jl: an interior-point solver
with abstract linear algebra

Miguel Anjos #® Andrea Lodi ¢ Mathieu Tanneau >

(a) Ecole polytechnique de Montréal
(b) GERAD

(c) CERC in Data Science for Real-time decision making

March 13, 2019

§, POLYTECHNIQUE
MONTREAL

oW,
}\'\ DATA SCIENCE
FOR REAL-TIME

» DECISION-MAKING
RS

[€ERAD

GROUP FOR RESEARCH
IN DECISION ANALYSIS

Mathieu Tanneau Tulip.jl - March 13, 2019

Foreword

© Foreword

Mathieu Tanneau

Foreword
®0

Linear programming (Primal-Dual standard form)

(P) min c'x (D) max bTy
st. Ax =b st. Aly +s =c¢
x >0 s >0

where x e R”, y e R™ s € R”

@ Solved with Simplex or Interior-Point
o Workhorse of
o MILP
e Decomposition (Dantzig-Wolfe & Benders)
o Polyhedral Outer approximations
o Cutting plane methods
]

Mathieu Tanneau Tulip.jl - March 13, 2019 3/24

Foreword
oe

Geometric view

(P) min c'x
X .
s.t. Ax=0b min

x>0

Simplex

- Many cheap iterations
- Extreme vertices
(basic points)

Interior-Point

- Few expensive
iterations

- Interior points (x > 0)

Mathieu Tanneau Tulip.jl - March 13, 2019 4 /24

© Interior-Point Methods

Mathieu Tanneau - March 13, 2019

IPMs
0

IPM overview

(P) min c¢c"x (D) max bTy
sit. Ax =b st. Aly +s =c

x >0 s >0

KKT optimality conditions:

Ax = b [primal feas.] (1)

ATy +s=c [dual feas] (2)
Vi, x;+-s; =0 [slackness] (3)
x,s >0 (4)

Algorithm (1) (2) 3 x>0 s>0

(primal) Simplex v vV v *
Interior-point v * x>0 s>0

v': at each iteration; *: at optimality only

Mathieu Tanneau Tulip.jl - March 13, 2019

IPMs
(o] J
IPM overview

Short history of IPMs:
@ The seminal paper [Karmarkar, 1984]

@ [Mehrotra, 1992]: predictor-corrector algorithm
(implemented in most IPM codes)

e Multiple centrality corrections [Gondzio, 1996]
@ Reference textbook [Wright, 1997]
o [Gondzio, 2012]: more recent survey of IPMs

(Some) software for LP/QP:
@ All commercial solvers (CPLEX, GRB, Mosek, Xpress, etc.)
e Open source: CLP, GLPK, OOQP, (PCx), (HOPDM)

Mathieu Tanneau Tulip.jl - March 13, 2019

IPMs
@O
Mehrotra's Predictor-Corrector algorithm

Compute initial point (see [Mehrotra, 1992])
(x°,y°%,s%) with x° > 0,s° > 0

Compute search direction

A 0 O AxT] [b— Ax

0 AT 1 || Ay | =] c—ATy—s5s [predictor]
s 0 x| |as" | | —xSe

A 0 0 Ax< [0

0o AT | Ay< | = 0 [corrector]
S 0 X | | as< | | ope—axaTase

Update current solution

(x+,y+,s+) — (x,y7s) + a(Aaff + Acc)

Repeat until convergence

Mathieu Tanneau

Tulip.jl - March 13, 2019

IPMs
(o] J
Mehrotra's Predictor-Corrector algorithm

Affine-scaling (full)
Affine-scaling (damped)
Corrector

Predictor-corrector step

Figure: Mehrotra's Predictor-Corrector, in x space

Mathieu Tanneau

- March 13, 2019

IPMs

Wrap-up

@ LP in standard Primal-Dual form

(P) min c"x (D) max bTy
st. Ax =b st. Aly +s =c
x >0 s >0

@ At each iteration, solve (several) Newton systems of the form

0 AT | Ax &d
A 0 O Ay | = | &
s 0 X As e

@ Polynomial-time algorithm (see [Wright, 1997])
@ Very efficient on large-scale problems

Mathieu Tanneau Tulip.jl - March 13, 2019

Linear Algebra in IPMs

© Linear Algebra in IPMs

Mathieu Tanneau | - March 13, 2019

Linear Algebra in IPMs
o

Newton system

Newton systems of the form

0 AT | Ax €4
A 0 0 : Ay = 5p
S 0 X As fxs

solved multiple times in each iteration, with various right-hand side.

Two ways to make an Interior-Point faster:
@ Reduce the number of iterations (better algorithm)

@ Reduce the time per iteration (better linear algebra)

Mathieu Tanneau Tulip.jl - March 13, 2019

Linear Algebra in IPMs
L]

Augmented system

Initial Newton system:

0 AT | Ax £y
A 0 0 : Ay = gp
S 0 X As gxs

Substitute As to obtain the Augmented system
-0t AT | [Ax | [&—X"%
A 0 Ay | | &
As = X H&s — SAX)
where © := XS~!
:(Left-hand matrix is indefinite (though regularization can be used)

:(Still costly to solve
:) More handy if free variables and/or non-linear terms

Mathieu Tanneau Tulip.jl - March 13, 2019

Linear Algebra in IPMs
o

Normal equations

Substitute Ax to obtain the Normal equations

(AOAT)Ay = £, + AO(Eq — X 1ye)
Ax = @(ATA)/ - gd + X_lgxs)
As = X7 Hés — SAX)

1) AGAT is positive-definite
:) Cholesky factorization AOAT = LLT

— specialized Cholesky based on A

Mathieu Tanneau Tulip.jl - March 13, 2019

Linear Algebra in IPMs
L]

Specialized Cholesky

Unit block-angular matrix

el

Al o Ap

Found in Dantzig-Wolfe decomposition 4+ column-generation

eT01 (A191)T

AGAT = :
6T9R (ARQR)T

A0 -+ Agbg)

— exploit structure to accelerate Cholesky factorization

Mathieu Tanneau Tulip.jl - March 13, 2019 15 / 24

Tulip.jl

Q Tulip.jl

Mathieu Tanneau

Tulip.jl
o
Solver overview

https://github.com/ds4dm/Tulip.jl

Main features
@ Homogeneous self-dual algorithm + multiple corrections
@ Upper-bounds handled explicitly
o Algorithm uses abstract linear algebra (A: :AbstractMatrix)
@ Generic sparse Cholesky + specialized for Unit block-angular

@ MathProgBase interface

WIP
@ MOI interface

@ Improved stability & general sparse linear algebra

Mathieu Tanneau Tulip.jl - March 13, 2019 17 / 24

https://github.com/ds4dm/Tulip.jl

Tulip.jl

Netlib instances

Netlib benchmark (https://www.netlib.org/lp/)
@ Small LP instances, some problematic
@ Only consider feasible instances with no free variables
@ No presolve, no crossover, single thread

@ Most solved in < 1s

Results
@ Tulip runs into numerical issues numerical issues, but...

o ...faster than CLP, GLPK, IpOpt on “hard" instances
(hard = solved in > 0.1s by all solvers)

Mathieu Tanneau Tulip.jl - March 13, 2019 18 / 24

https://www.netlib.org/lp/

Tulip.jl
e0

Column-generation instances

Instances:
@ m = 24,48,96 linking constraints
o N =210 to 21 sub-problems
Each sub-problem solved with Gurobi
@ Same column-generation code
@ Master problem statistics:

o N -+ m constraints
o up to ~ 4—10 x N variables
e ~4—-10 x N X m non-zeros

Mathieu Tanneau Tulip.jl - March 13, 2019 19 / 24

Tulip.jl
oe

Column-generation instances

Solver setup:
@ Barrier algorithm, no cross-over
o No presolve
@ Single thread
@ Tulip: Generic IPM + specialized linear algebra

Computational results:
@ Barrier (almost always) faster than Simplex
e Computing times (for Restricted Master Problem)

o vs Mosek: —33% (total time); —50% (per-iteration time)
o vs Gurobi: —60% (total time); —70% (per-iteration time)
e vs CPLEX: —55% (total time); —45% (per-iteration time)

Mathieu Tanneau Tulip.jl - March 13, 2019

Conclusion

© Conclusion

Mathieu Tanneau

Conclusion
[]

Conclusion

Takeaway:
@ IPM solver for linear programming
@ Generic algorithm + specialized linear algebra
@ Possible to beat SOTA solvers

Roadmap:
e MOI interface
@ Numerical stability
e Extension to QP

Open JuMP-related questions:
@ Passing structure information to solver

@ Problem modification

Mathieu Tanneau Tulip.jl - March 13, 2019

Conclusion
o

Questions

Thank you!
https://github.com/ds4dm/Tulip. jl

Questions?

mathieu.tanneau@polymtl.ca

Mathieu Tanneau Tulip.jl - March 13, 2019

https://github.com/ds4dm/Tulip.jl

References

[H Gondzio, J. (1996).
Multiple centrality corrections in a primal-dual method for linear
programming.
Computational Optimization and Applications, 6(2):137-156.

[H Gondzio, J. (2012).
Interior point methods 25 years later.
European Journal of Operational Research, 218(3):587 — 601.

[§ Karmarkar, N. (1984).
A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373-395.

[§ Mehrotra, S. (1992).
On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575-601.

[§ Wright, S. (1997).
Primal-Dual Interior-Point Methods.
Society for Industrial and Applied Mathematics.

Mathieu Tanneau Tulip.jl - March 13, 2019

	Foreword
	

	Interior-Point Methods
	IPM overview
	Mehrotra's Predictor-Corrector algorithm
	Wrap-up

	Linear Algebra in IPMs
	Newton system
	Augmented system
	Normal equations
	Specialized Cholesky

	Tulip.jl
	Solver overview
	Netlib instances
	Column-generation instances

	Conclusion
	Conclusion
	Questions

