PiecewiselLinearOpt.jl

Solving optimization problems containing piecewise linear
functions



Linear optimization (LP)

min Lz

x

s.t. Az <b

e Surprisingly powerful modeling capabilities
e Can solve large instances, quickly



Piecewise linear (PWL) optimization
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Piecewise linear (PWL) optimization
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Mixed-integer optimization (MIP)

e Discrete variables let you to model discrete decisions
e Discrete decision for PWL function: which piece you are on

(z,y) € {(z,cfz+by):ze PYU{(z, Gz +b):z € PPyU---U{(z,clz +by) : z € P4}

e Standard techniques for modeling logic with MIP = d auxiliary binary variables
o Almost never what you want!

e 10+ MIP formulations in literature for univariate functions (!)
e Even more complex for higher dimensions



What MIP formulations are there?



Logarithmic formulation (J.P. formulation)

e For univariate PWL functions f: R =+ R
e One particularly small, strong formulation
e Built around Gray codes: sequence of distinct vectors {v'}ir;" € {0, 1} /8 (VD!
with [0 = v =1and v° =0} vV =0V
o TakeL’={ie[N]:vi '+, >1}, R ={ie[N]:v ' +v; <1}
for each Jj € ”logg(N - D]
e Take univariate PWL function given by breakpoints {(z*, y*) }i,



Logarithmic formulation (J.P. formulation)
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Logarithmic formulation (J.P. formulation)

e What we need:
1.  Understand the paper
2. Construct a Gray code
3. Construct the sets {(A7, B7)} /5"~ 1!
4. Find the breakpoints (if you have a functional form)
e Not impossible, but non-trivial
e Anecdotally, a real barrier for practitioners
e And this is just univariate functions!
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2-dimensional PWL functions

How do we partition the domain?
Apply gridding along each dimension, triangulate each subrectangle
Much richer combinatorial structure

Even harder to model with MIP

Some formulations work for “regular” triangulations only



PiecewiselinearOpt.jl

1. Representations for arbitrary, multidimensional piecewise linear functions
o Helper constructors to go from functional form = “breakpoint”
representation
2. JuMP extension to build MIP models for 1D and 2D PWL functions

o 10 formulations for 1D
o 9 formulations for 2D



PiecewiselinearOpt.jl

julia> UnivariatePWLFunction(1:5, [1,2,4,7,11])

# => PWLFunction{1}([(1.0,),(2.0,),(3.0,),(4.0,),(5.0,)],
[1.0,2.0,4.0,7.0,11.0],
[[1,2],[2,3],[3,4],[4,5]1],

Dict())



PiecewiselinearOpt.jl

julia> UnivariatePWLFunction(1:5, sin)

# => PWLFunction{1}([(1.0,),(2.0,),(3.0,),(4.0,),(5.0,)],
[0.8414,0.9092,0.141,-0.7568,-0.9589],
[[1,2],[2,3],[3,4],[4,5]1],

Dict())



PiecewiselinearOpt.jl

julia> BivariatePWLFunction(1:5, 1:5, (x,y)->(x-1/3)"2+3(y-4/7)"4)

# => PWLFunction{2}([(1.0,1.9),(2.0,1.9),...,(4.0,5.0),(5.0,5.0)],
[0.545652,2.87899, ...,1167.36,1175.7],
[[1,6,2],[2,6,7]1,...,[19,24,20],[20,24,25]],
Dict(:structure=>:BestFit))



PiecewiselinearOpt.jl

julia> BivariatePWLFunction(1:5, 1:5, (x,y)->(x-1/3)"2+3(y-4/7)"4)

# => PWLFunction{2}([(1.0,1.9),(2.0,1.9),...,(4.0,5.0),(5.0,5.0)],
[0.545652,2.87899, ...,1167.36,1175.7],
[[1,6,2],[2,6,7]1,...,[19,24,20],[20,24,25]],
Dict(:structure=>:BestFit))
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MIP formulations for grid triangulations

e State-of-the-art, circa 2014:

o “Universal” MIP formulation approaches (# of binaries = # of triangles)
o  Small formulations for highly structured triangulations (# of binaries = log(# of triangles)+1)

e In2015:

o J.P.shows a small formulation for looser structure (# of binaries = log(# of triangles)+2)

e In2016:

o  Small formulation for any triangulation (# of binaries = log(# of triangles)+9)

e In2017:
o Whittled down to log(# of triangles)+6

e Constants have appreciable affect on performance




Piecewise linear functions in JuMP

using JuMP, PiecewiselinearOpt, Gurobi

model = Model(solver=GurobiSolver())

@variable(model, x)

d = 0:(pi/4):2pi

z = piecewiselinear(model, x, d, sin)

# = piecewiselinear(model, x, UnivariatePWLFunction(d,sin))

@objective(model, Max, z)



Grid triangulations in JuMP

using JuMP, PiecewiselinearOpt, Gurobi

model = Model(solver=GurobiSolver())

@variable(model, x)

d = 0:(pi/4):2pi

z = piecewiselinear(model, x, d, sin, method=:Incremental)
# = piecewiselinear(model, x, UnivariatePWLFunction(d,sin))

@objective(model, Max, z)



New research directions (i.e. open PRs)



“Optimal” MIP formulations

The “constant” term for grid triangulations can make a difference of up to 3-bx
Can find the “optimal” formulation (smallest # of binaries) by solving a MIP!
MIP is not very scaleable (yet), but...

Optimal MIP formulations is best performer, once computed

Somewhat surprising: loses grid structure along each dimension (x and y)

Trivial to implement in JuMP:
o  Solve a MIP in JuMP during model generation



Moment curve formulations

e Relaxed notion of “MIP formulation”
a. Combines:
i. Algebraic relaxation for (convex hull of) disjunctive set, with auxiliary integer variables
ii. Constraint programming -like treatment of control variables (y € H)
e FE.g. embed disjunctive sets along moment curve
a. Have inequality description for algebraic description
b. Treat control variables with custom branching scheme
e Implementin JuMP (and CPLEX) using:

a. Branching callbacks
b. Incumbent callbacks



Future directions

e JuMP models for...
o  Higher dimensional PWL functions
o More complex partitions of domains (not just triangulations)

e Connections with similar problems
o  Convex envelopes for bilinear (and multilinear) functions
o Approximations for structured nonlinear functions
m Signomial programming
m Difference of convex programming



