
PiecewiseLinearOpt.jl

Solving optimization problems containing piecewise linear 
functions



Linear optimization (LP)

● Surprisingly powerful modeling capabilities
● Can solve large instances, quickly



Piecewise linear (PWL) optimization

Where ● Appears in economics, operations, 
engineering, …

● Also, “simple” LP approximation for 
nonlinear optimization



Piecewise linear (PWL) optimization

Where ● When f is convex, exists canonical 
transformation to LP

● What about when f is nonconvex?



Mixed-integer optimization (MIP)

● Discrete variables let you to model discrete decisions
● Discrete decision for PWL function: which piece you are on

● Standard techniques for modeling logic with MIP → d auxiliary binary variables
○ Almost never what you want!

● 10+ MIP formulations in literature for univariate functions (!)
● Even more complex for higher dimensions



What MIP formulations are there?



Logarithmic formulation (J.P. formulation)

● For univariate PWL functions 
● One particularly small, strong formulation
● Built around Gray codes: sequence of distinct vectors                                     

with                        and              ,
● Take                                                  ,                       ,                                                 

for each 
● Take univariate PWL function given by breakpoints



Logarithmic formulation (J.P. formulation)



Logarithmic formulation (J.P. formulation)

● What we need:
1. Understand the paper
2. Construct a Gray code
3. Construct the sets
4. Find the breakpoints (if you have a functional form)

● Not impossible, but non-trivial
● Anecdotally, a real barrier for practitioners
● And this is just univariate functions!



2-dimensional PWL functions

● How do we partition the domain?
● Apply gridding along each dimension, triangulate each subrectangle
● Much richer combinatorial structure
● Even harder to model with MIP
● Some formulations work for “regular” triangulations only



PiecewiseLinearOpt.jl

1. Representations for arbitrary, multidimensional piecewise linear functions
○ Helper constructors to go from functional form → “breakpoint” 

representation
2. JuMP extension to build MIP models for 1D and 2D PWL functions

○ 10 formulations for 1D
○ 9 formulations for 2D



julia> UnivariatePWLFunction(1:5, [1,2,4,7,11])

# => PWLFunction{1}([(1.0,),(2.0,),(3.0,),(4.0,),(5.0,)],

     [1.0,2.0,4.0,7.0,11.0],

     [[1,2],[2,3],[3,4],[4,5]],

     Dict())
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julia> UnivariatePWLFunction(1:5, sin)

# => PWLFunction{1}([(1.0,),(2.0,),(3.0,),(4.0,),(5.0,)],

     [0.8414,0.9092,0.141,-0.7568,-0.9589],

     [[1,2],[2,3],[3,4],[4,5]],

     Dict())

PiecewiseLinearOpt.jl



PiecewiseLinearOpt.jl

julia> BivariatePWLFunction(1:5, 1:5, (x,y)->(x-1/3)^2+3(y-4/7)^4)

# => PWLFunction{2}([(1.0,1.0),(2.0,1.0),…,(4.0,5.0),(5.0,5.0)],

                    [0.545652,2.87899, …,1167.36,1175.7],

                    [[1,6,2],[2,6,7],…,[19,24,20],[20,24,25]],

  Dict(:structure=>:BestFit))
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julia> BivariatePWLFunction(1:5, 1:5, (x,y)->(x-1/3)^2+3(y-4/7)^4)

# => PWLFunction{2}([(1.0,1.0),(2.0,1.0),…,(4.0,5.0),(5.0,5.0)],

                    [0.545652,2.87899, …,1167.36,1175.7],

                    [[1,6,2],[2,6,7],…,[19,24,20],[20,24,25]],

  Dict(:structure=>:BestFit))



MIP formulations for grid triangulations

● State-of-the-art, circa 2014:
○ “Universal” MIP formulation approaches (# of binaries = # of triangles)
○ Small formulations for highly structured triangulations (# of binaries = log(# of triangles)+1)

● In 2015:
○ J.P. shows a small formulation for looser structure (# of binaries = log(# of triangles)+2)

● In 2016:
○ Small formulation for any triangulation (# of binaries = log(# of triangles)+9)

● In 2017:
○ Whittled down to log(# of triangles)+6

● Constants have appreciable affect on performance



Piecewise linear functions in JuMP

using JuMP, PiecewiseLinearOpt, Gurobi

model = Model(solver=GurobiSolver())

@variable(model, x)

d = 0:(pi/4):2pi

z = piecewiselinear(model, x, d, sin)

# = piecewiselinear(model, x, UnivariatePWLFunction(d,sin))

@objective(model, Max, z)



Grid triangulations in JuMP

using JuMP, PiecewiseLinearOpt, Gurobi

model = Model(solver=GurobiSolver())

@variable(model, x)

d = 0:(pi/4):2pi

z = piecewiselinear(model, x, d, sin, method=:Incremental)

# = piecewiselinear(model, x, UnivariatePWLFunction(d,sin))

@objective(model, Max, z)



New research directions (i.e. open PRs)



“Optimal” MIP formulations

● The “constant” term for grid triangulations can make a difference of up to 3-5x
● Can find the “optimal” formulation (smallest # of binaries) by solving a MIP!
● MIP is not very scaleable (yet), but…
● Optimal MIP formulations is best performer, once computed
● Somewhat surprising: loses grid structure along each dimension (x and y)
● Trivial to implement in JuMP:

○ Solve a MIP in JuMP during model generation



Moment curve formulations

● Relaxed notion of “MIP formulation”
a. Combines:

i. Algebraic relaxation for (convex hull of) disjunctive set, with auxiliary integer variables
ii. Constraint programming -like treatment of control variables (          )

● E.g. embed disjunctive sets along moment curve
a. Have inequality description for algebraic description
b. Treat control variables with custom branching scheme

● Implement in JuMP (and CPLEX) using:
a. Branching callbacks
b. Incumbent callbacks



Future directions

● JuMP models for…
○ Higher dimensional PWL functions
○ More complex partitions of domains (not just triangulations)

● Connections with similar problems
○ Convex envelopes for bilinear (and multilinear) functions
○ Approximations for structured nonlinear functions

■ Signomial programming
■ Difference of convex programming


