..‘ JuMP
Developers
Workshop

L June 12-16, 2017. [NIT MANAGEMENT

Speakers

‘. ! |

Chris Coey, MIT * Carleton Coffrin, LANL ¢ Steven Diamond,
Stanford ¢ Joaquim Dias Garcia, PSR & PUCRio ¢ Oscar
Dowson, U. of Auckland * Joey Huchette, MIT ¢ Jordan Jalving,
UW-Madison ¢ Benoit Legat, UCL ¢ Miles Lubin, MIT ¢ Yee Sian
Ng, MIT ¢ Jarrett Revels, MIT ¢ Nestor Sepulveda, MIT
Bartolomeo Stellato, U. of Oxford * Juan Pablo Vielma, MIT

Sponsored by: er

MANAGEMENT
LATIN AMERICA OFFICE

www.juliaopt.org/developersmeetup

Why a meetup?

Transfer of knowledge

Community building

Decisions on JuMP 1.0 and MathProgBase 1.0
Accelerate JuMP-related projects

Schedule

http://www.juliaopt.org/developersmeetup/

WiFi: MIT GUEST

http://www.juliaopt.org/developersmeetup/
http://www.juliaopt.org/developersmeetup/

Streaming

The Design of JUMP and
MathProgBase

Miles Lubin
JUMP developers meetup
June 12, 2017

To accomplish in this talk

e Explain everything about JuMP (maybe not everything)
o How JuMP evolved
o Design considerations
o Which parts are there for a good reason
o Which parts should be reconsidered

e This is a starting point for rest of discussions

What did we want in a modeling language?

e Modern, modular, easy to embed...

o Within a simulation
o Within an interactive visualization

Interact with solvers while they are running
Easy to extend to specialized problem classes
Commercial tools are none of these

Open source tools have been slow
o Based on Python and MATLAB

Why We Created Julia

Feb 2012 | Jeff Bezanson, Stefan Karpinski, Viral Shah, Alan Edelman
In short, because we are greedy.

We are power Matlab users. Some of us are Lisp hackers. Some are Pythonistas, others Rubyists, still others Perl
hackers. There are those of us who used Mathematica before we could grow facial hair. There are those who still can’t
grow facial hair. We've generated more R plots than any sane person should. C is our desert island programming
language.

We love all of these languages; they are wonderful and powerful. For the work we do — scientific computing, machine
learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some
aspects of the work and terrible for others. Each one is a trade-off.

We are greedy: we want more.

October 2012

I R R R R R
Julp
A MILP modelling langauge for Julia
Julia

By Iain Dunning and Miles Lubin
bididodidibdididid bbb bt bbb S b b b S b did bbb S b i bbb ik 8

First implementation question

How do we capture linear expressions inside a programming language?

Modeling in Julia

http://github.com/IainNZ/Julp

@ Julia replaces domain-specific language

@ Use macros to avoid issues with operator overloading

Model("max")
[Variable(m) for j = 1:N]
profit = rand(N); weight = rand(N);

m

X

setObjective (m,

@sumExpr ([profit[j] * x[j] for j = 1:N])
)
addConstraint(m,

@sumExpr ([weight[j] * x[j] for j = 1:N])
)

January 2013: https://youtu.be/O1icUP6sajU

https://youtu.be/O1icUP6sajU

Revisiting the performance trade-offs

https://github.com/mlubin/18.337/blob/master/operators.jl

e AffExpr operator overloading
e Graph operator overloading
e Manual expression construction

https://github.com/mlubin/18.337/blob/master/operators.jl
https://github.com/mlubin/18.337/blob/master/operators.jl

Consequences of choosing to use macros

e JuMP is fast
e Performance warnings on AffExpr operator overloads
e ‘“variable*coefficient” not supported until JuMP 0.7.0

First benchmarks (May 2013)

Table 2 Linear-quadratic control benchmark results. N=M is the grid size. Total time (in seconds) to process

the model definition and produce the output file in LP and MPS formats (as available).

JuMP /Julia AMPL Gurobi/C++ Pulp/PyPy Pyomo

N LP MPS MPS LP MPS LP MPS LP
250 0.5 0.9 0.8 1.2 . | 8.3 7.2 133
500 2.0 3.6 3.0 4.5 44 276 244 534
750 5.0 8.4 6. 10.2 101 610 545 1210

1,000 8.2 1535 116 176 17.3 108.2 97.5 214.7

M. Lubin & |. Dunning, “Computing in Operations Research using Julia”,
INFORMS Journal on Computing, 2015

Note: Why don’t LP/MPS writers use names?

They were too slow in the benchmarks. (code)
Also, benchmarks led us to implement crazy lazy naming scheme:

@variable(m, x[1:N]) only creates names for x when needed. (code)

https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/writers.jl
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/print.jl#L312

Ll JuliaOpt / JuMP.jl @ Unwatch~ | 52 | | JeUnstar | 300 | [Y Forc | o2

:» Code 1 Issues 52 i Pull requests & [l Projects o 4~ Pulse [:li Graphs £} Settings

Quadratic constraints #34

mlubin merged 12 commits into Juliaopt:master frOoM unknown repository on Sep 12, 2013

it Conversation ¢ < Commits 12 Files changed 8 +150 ~20 HEEN

joehuchette commented on Sep 12, 2013 Member +(@ 4 Reviewers

Mo reviews—request one

Added (preliminary) quadratic constraint functionality for LF/MIP.

Assignees

Extending macros to quadratic expressions

Quadratic expressions could only be created by overloading only for a long
time

Traces of this: Collections defined by Rexpression must be linear
expressions (code)

Extending macros to quadratic expressions was hard/impossible before

generated functions introduced in Julia 0.4
o At compile time, unknown what is a variable and what is a coefficient

Implementation is still messy, use generated functions to reorder arguments
(code)

https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/macros.jl#L764
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/parseExpr_staged.jl#L277

Quadratic benchmarks (May 2015)

Commercial Open-source
Instance | JuMP | GRB/c++ AMPL GAMS | Pyomo CVX YALMIP
lqep-500 8 2 2 2 55 6 8
1qep-1000 11 6 6 13 232 48 25
lqep-1500 15 14 13 41 530 135 52
lqep-2000 22 26 24 101 >600 296 100
fac-25 7 0 0 0 14 >600 533
fac-50 9 2 2 3 114 >600 >600
fac-75 13 5 T 11 391 >600 >600
fac-100 24 12 18 29 >600 >600 >600
TABLE 1

Time (sec.) to generate each model and pass it to the solver, a comparison between JuMP
and ezisting commercial and open-source modeling languages. The lqcp instances have quadratic
objectives and linear constraints. The fac instances have linear objectives and conic-quadratic con-
straints.

What does JUMP really do?

e Provides a nice interface to MathProgBase
e Why? Keep JuMP lightweight, fast, no transformations

MathProgBase (MPB)

Started out as an interface to LP solvers (March 2013)

Before that, Julia had GLPK built-in! (for package management)

Named MPB because JUuMP was called MathProg for a while (Feb 2013)
After LP, tacked on integers, SOS, callbacks, nonlinear, conic

Problem: which solvers support what?
o Led to splitting into LPQP, Conic, Nonlinear

Major reorganization to be proposed this afternoon

The abstraction juggle

e Tryto keep MathProgBase close to the solver APls to make the Julia
wrappers simple

e Try to keep the JUMP model close to the in-memory model so that we can
easily modify it in place

e Compare with file formats: LP, MPS, NL, OSiL, CBF

Three problem classes

e LinearQuadratic
e Conic
e Nonlinear

LinearQuadratic abstraction

min ¢!

£T
s.t.a?st: sense; b;V 1
[L m<m
e Plus integer variables, quadratic objective, quadratic constraints, SOCP

e LP hotstarts, branch & bound callbacks
e CPLEX, Gurobi, Cbc/Clp, GLPK, Mosek, SCIP

mcf = Model ()
@variable(mcf, 0 <= flow[e in edges] <= e.capacity)
@constraint (mcf, sum(flow[e] for e in edges if e.to==5)== 1)

@constraint (mcf, flowcon[n=2:4],sum(flow[e] for e in edges
if e.to==node) == sum(flow[e] for e in edges if
e. from==node))

@objective (mcf, Min, sum(e.cost * flow[e] for e in edges))

solve (mcf)

Generates input data structures and calls 1oadproblem!,
optimize!, etc.

http://mathprogbasejl.readthedocs.io/en/latest/lpqcqp.html#loadproblem!
http://mathprogbasejl.readthedocs.io/en/latest/solverinterface.html#optimize!
http://mathprogbasejl.readthedocs.io/en/latest/solverinterface.html#optimize!

Conic abstraction

min !z

£X

S.t.b—Ai?EKl
r € K5

e Linear, SOC, SDP, exponential cones
e Mosek, ECOS, SCS, CSDP

max — bly
y

stodt-Aty e K
y € K

Nonlinear abstraction

min f(x)
sit.lb < glz) < ub
[<z <u

e Gradient, Jacobian, Hessian oracles, expression graphs
e Ipopt, Mosek, KNITRO, NLopt

Callbacks

e Envisioned to be solver independent, only support a callback when it exists in
more than one solver (e.g., lazy constraints)
e Problematic (what is a lazy constraint?), maybe too much abstraction

Proposed reorganization

e Solver statuses (issue)

e Generalizing conic form to “quadratic expression in set” (issue)
o Subsumes both LinearQuadratic and Conic

e More discussion this afternoon

https://github.com/JuliaOpt/MathProgBase.jl/issues/164
https://github.com/JuliaOpt/MathProgBase.jl/issues/168

JuMP syntax

e How we started
e \What we learned

February 2013: beginning of “modern” syntax

Old

()
I

[Variable(m,0,1,0,"s$i") for i=l:numLocation]

New

@defVvar(m, 0 <= s[l:numLocation] <= 1)
@addConstraint(m, sum{s[i],i=1l:numLocation} == numFacility)

Recent changes

e Renamed everything from camelCase (JuMP 0.13, April 2016)
e sum{} becomes sum() (JuUMP 0.15, December 2016)

Defining variables

e Syntax has gotten simpler
o Disallow @variable(m, x[1][1:N])
o Disallow multiple variables with the same name
o Anonymous variables

e Remove the magic
@variable(m, x[1:N]) is a shorthand for

error if m[:x] is already defined
X = m[:x] = @variable(m, [1:N], basename="x")

JUMP’s containers

e Inspired by AMPL, allow indexing over arbitrary sets
0O s = ["Green", "Blue"]
@variable(m, x[-10:10,s], Int)
e Introduced triangular indexing in JuMP 0.6
0 (@variable(m, x[i=1:10,3J=i:10])
e Introduced conditional indexing in JuMP 0.10

0 (@variable(m, x[i=1:10; iseven(i)])

JUMP’s containers

e If all index sets are ranges of the form 1:N, return a Julia Array

e |[f all axes are independent, return a JuMPArray
o AxisArrays?

e Otherwise, return a JuMPDict
e JuMPDict is “just’” a wrapper around a Julia Dict that translates x[a,b,c] to
x.tupledict[(a,b,c)]

https://github.com/rdeits/AxisArrayVariables.jl
https://github.com/rdeits/AxisArrayVariables.jl

Semidefinite programming

e Required introduction of vector-based syntax, essentially using AffExpr
operator overloading even inside macros
®¢ (@SDconstraint(m, X >= 0)
0 Q@constraint(m, X in PSD()) soon?

e Symmetry is problematic (issue)
o A’XA may not be exactly symmetric because of order of operations

https://github.com/JuliaOpt/JuMP.jl/issues/1050

Nonlinear programming, expression graphs

e Introduced in JuMP 0.5, rewritten in JuUMP 0.12

e (@NLconstraint stores a scalar-based expression graph, vector expressions
not supported

e Key points already explained: https://youtu.be/xtfNug-htcs

e Future: ReverseDiff?

https://youtu.be/xtfNug-htcs
https://github.com/JuliaDiff/ReverseDiff.jl

JUMP internals for extensions

The ext dict (code)

solvehook and printhook (code)
Generic affine expressions (code)

Generic norms (code)

Re-using JUuMP containers (example)
Recent generalization of @variable (PR)
Syntax for set inclusion constraints (PR)

https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/JuMP.jl#L136
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/solvers.jl#L151
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/affexpr.jl#L22
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/norms.jl#L26
http://jumpchance.readthedocs.io/en/latest/quickstart.html#defining-variables
https://github.com/JuliaOpt/JuMP.jl/pull/1029
https://github.com/JuliaOpt/JuMP.jl/pull/1013

JuliaOpt

October/November 2013

What 1s JuliaOpt?

JuliaOpt is an umbrella group for Julia-based optimization-related projects. All our code is available from our GitHub page, as well as through the Julia
package manager. The current JuliaOpt projects are:

+ JuMP - An algebraic modeling language for optimization problems embedded in Julia that generates models as quick as commercial modeling tools.
(Documentation, GitHub)

+ Optim - Implementations of standard optimization algorithms in pure Julia for unconstrained or box constrained problems. (Documentation, GitHub)

+ MathProgBase - A standardized interface implemented by solvers that allows code to remain solver-agnostic. Used by JuMP. (Documentation, GitHub)

The new JuliaOpt

e GitHub organizations were designed to facilitate managing permissions and
tasks across multiple repositories, not to be a public brand

e New JuliaOpt is organized around collaboration and interest in a common set
of packages

e Hence “Optim family” moved to JuliaNLSolvers organization

e Peer review of optimization software?

Thoughts on open-source development

