

Why a meetup?
● Transfer of knowledge
● Community building
● Decisions on JuMP 1.0 and MathProgBase 1.0
● Accelerate JuMP-related projects

Schedule
http://www.juliaopt.org/developersmeetup/

WiFi: MIT GUEST

http://www.juliaopt.org/developersmeetup/
http://www.juliaopt.org/developersmeetup/

Streaming

The Design of JuMP and
MathProgBase

Miles Lubin
JuMP developers meetup

June 12, 2017

To accomplish in this talk
● Explain everything about JuMP (maybe not everything)

○ How JuMP evolved
○ Design considerations
○ Which parts are there for a good reason
○ Which parts should be reconsidered

● This is a starting point for rest of discussions

What did we want in a modeling language?

● Modern, modular, easy to embed…
○ Within a simulation
○ Within an interactive visualization

● Interact with solvers while they are running
● Easy to extend to specialized problem classes
● Commercial tools are none of these
● Open source tools have been slow

○ Based on Python and MATLAB

October 2012

First implementation question
How do we capture linear expressions inside a programming language?

January 2013: https://youtu.be/O1icUP6sajU

https://youtu.be/O1icUP6sajU

Revisiting the performance trade-offs
https://github.com/mlubin/18.337/blob/master/operators.jl

● AffExpr operator overloading
● Graph operator overloading
● Manual expression construction

https://github.com/mlubin/18.337/blob/master/operators.jl
https://github.com/mlubin/18.337/blob/master/operators.jl

Consequences of choosing to use macros
● JuMP is fast
● Performance warnings on AffExpr operator overloads
● “variable*coefficient” not supported until JuMP 0.7.0

First benchmarks (May 2013)

M. Lubin & I. Dunning, “Computing in Operations Research using Julia”,
INFORMS Journal on Computing, 2015

Note: Why don’t LP/MPS writers use names?
They were too slow in the benchmarks. (code)

Also, benchmarks led us to implement crazy lazy naming scheme:

@variable(m, x[1:N]) only creates names for x when needed. (code)

https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/writers.jl
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/print.jl#L312

Extending macros to quadratic expressions
● Quadratic expressions could only be created by overloading only for a long

time
● Traces of this: Collections defined by @expression must be linear

expressions (code)
● Extending macros to quadratic expressions was hard/impossible before

generated functions introduced in Julia 0.4
○ At compile time, unknown what is a variable and what is a coefficient

● Implementation is still messy, use generated functions to reorder arguments
(code)

https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/macros.jl#L764
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/parseExpr_staged.jl#L277

Quadratic benchmarks (May 2015)

What does JuMP really do?
● Provides a nice interface to MathProgBase
● Why? Keep JuMP lightweight, fast, no transformations

MathProgBase (MPB)
● Started out as an interface to LP solvers (March 2013)
● Before that, Julia had GLPK built-in! (for package management)
● Named MPB because JuMP was called MathProg for a while (Feb 2013)
● After LP, tacked on integers, SOS, callbacks, nonlinear, conic
● Problem: which solvers support what?

○ Led to splitting into LPQP, Conic, Nonlinear

● Major reorganization to be proposed this afternoon

The abstraction juggle
● Try to keep MathProgBase close to the solver APIs to make the Julia

wrappers simple
● Try to keep the JuMP model close to the in-memory model so that we can

easily modify it in place
● Compare with file formats: LP, MPS, NL, OSiL, CBF

Three problem classes
● LinearQuadratic
● Conic
● Nonlinear

LinearQuadratic abstraction

● Plus integer variables, quadratic objective, quadratic constraints, SOCP
● LP hotstarts, branch & bound callbacks
● CPLEX, Gurobi, Cbc/Clp, GLPK, Mosek, SCIP

mcf = Model()

@variable(mcf, 0 <= flow[e in edges] <= e.capacity)

@constraint(mcf, sum(flow[e] for e in edges if e.to==5)== 1)

@constraint(mcf, flowcon[n=2:4],sum(flow[e] for e in edges
if e.to==node) == sum(flow[e] for e in edges if
e.from==node))

@objective(mcf, Min, sum(e.cost * flow[e] for e in edges))

solve(mcf)

Generates input data structures and calls loadproblem!,
optimize!, etc.

http://mathprogbasejl.readthedocs.io/en/latest/lpqcqp.html#loadproblem!
http://mathprogbasejl.readthedocs.io/en/latest/solverinterface.html#optimize!
http://mathprogbasejl.readthedocs.io/en/latest/solverinterface.html#optimize!

Conic abstraction

● Linear, SOC, SDP, exponential cones
● Mosek, ECOS, SCS, CSDP

Nonlinear abstraction

● Gradient, Jacobian, Hessian oracles, expression graphs
● Ipopt, Mosek, KNITRO, NLopt

Callbacks
● Envisioned to be solver independent, only support a callback when it exists in

more than one solver (e.g., lazy constraints)
● Problematic (what is a lazy constraint?), maybe too much abstraction

Proposed reorganization
● Solver statuses (issue)
● Generalizing conic form to “quadratic expression in set” (issue)

○ Subsumes both LinearQuadratic and Conic

● More discussion this afternoon

https://github.com/JuliaOpt/MathProgBase.jl/issues/164
https://github.com/JuliaOpt/MathProgBase.jl/issues/168

JuMP syntax
● How we started
● What we learned

February 2013: beginning of “modern” syntax

Old

s = [Variable(m,0,1,0,"s$i") for i=1:numLocation]
...

New

@defVar(m, 0 <= s[1:numLocation] <= 1)
@addConstraint(m, sum{s[i],i=1:numLocation} == numFacility)

● Renamed everything from camelCase (JuMP 0.13, April 2016)
● sum{} becomes sum() (JuMP 0.15, December 2016)

Recent changes

Defining variables
● Syntax has gotten simpler

○ Disallow @variable(m, x[1][1:N])
○ Disallow multiple variables with the same name
○ Anonymous variables

● Remove the magic

@variable(m, x[1:N]) is a shorthand for

error if m[:x] is already defined
x = m[:x] = @variable(m, [1:N], basename=”x”)

JuMP’s containers
● Inspired by AMPL, allow indexing over arbitrary sets

○ s = ["Green", "Blue"]
@variable(m, x[-10:10,s], Int)

● Introduced triangular indexing in JuMP 0.6
○ @variable(m, x[i=1:10,j=i:10])

● Introduced conditional indexing in JuMP 0.10
○ @variable(m, x[i=1:10; iseven(i)])

JuMP’s containers
● If all index sets are ranges of the form 1:N, return a Julia Array
● If all axes are independent, return a JuMPArray

○ AxisArrays?

● Otherwise, return a JuMPDict
● JuMPDict is “just” a wrapper around a Julia Dict that translates x[a,b,c] to

x.tupledict[(a,b,c)]

https://github.com/rdeits/AxisArrayVariables.jl
https://github.com/rdeits/AxisArrayVariables.jl

Semidefinite programming
● Required introduction of vector-based syntax, essentially using AffExpr

operator overloading even inside macros
● @SDconstraint(m, X >= 0)

○ @constraint(m, X in PSD()) soon?

● Symmetry is problematic (issue)
○ A’XA may not be exactly symmetric because of order of operations

https://github.com/JuliaOpt/JuMP.jl/issues/1050

Nonlinear programming, expression graphs
● Introduced in JuMP 0.5, rewritten in JuMP 0.12
● @NLconstraint stores a scalar-based expression graph, vector expressions

not supported
● Key points already explained: https://youtu.be/xtfNug-htcs
● Future: ReverseDiff?

https://youtu.be/xtfNug-htcs
https://github.com/JuliaDiff/ReverseDiff.jl

JuMP internals for extensions
● The ext dict (code)
● solvehook and printhook (code)
● Generic affine expressions (code)
● Generic norms (code)
● Re-using JuMP containers (example)
● Recent generalization of @variable (PR)
● Syntax for set inclusion constraints (PR)

https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/JuMP.jl#L136
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/solvers.jl#L151
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/affexpr.jl#L22
https://github.com/JuliaOpt/JuMP.jl/blob/9a32caff1684954fb377403aeccf77ecfb60d13f/src/norms.jl#L26
http://jumpchance.readthedocs.io/en/latest/quickstart.html#defining-variables
https://github.com/JuliaOpt/JuMP.jl/pull/1029
https://github.com/JuliaOpt/JuMP.jl/pull/1013

JuliaOpt
October/November 2013

The new JuliaOpt
● GitHub organizations were designed to facilitate managing permissions and

tasks across multiple repositories, not to be a public brand
● New JuliaOpt is organized around collaboration and interest in a common set

of packages
● Hence “Optim family” moved to JuliaNLSolvers organization
● Peer review of optimization software?

Thoughts on open-source development

