
The Unreasonable Effectiveness 
of Multiple Dispatch

Stefan Karpinski

u alj i



Multiple Dispatch?

dispatch 
degree syntax

dispatched on 
arguments

selection 
power

none f(x, y) { } O(1)

single x.f(y) {x} O(|X|)

multiple f(x, y) {x, y} O(|X|⋅|Y|)



Multiple Dispatch?

A demo is the most effective explanation



Unreasonable Effectiveness?

If you’re familiar with Julia’s ecosystem, you may have noticed…


‣ there’s a really large amount of code sharing and code reuse


as compared to comparable high-level dynamic languages

(already a pretty happy-to-share crowd)



Delightful & Puzzling

What is going on? Why is there such an increase in code reuse?


‣ it’s a genuine surprise—we did not predict most this


‣ we believe this is due to multiple dispatch


‣ we chose multiple dispatch to have this effect, chose it because…


1. it’s very natural for mathematics

meaning of x + y depends on x and y not just x 

2. it’s great for expressing generic algorithms

this is actually part of the explanation but not all of it



Two Kinds of Code Reuse

There are two quite different kinds of code reuse that we see


1. common types shared by very different packages


2. generic algorithms applied to many different types


These are different and have different explanations


‣ both stem from aspects of multiple dispatch



Sharing Common Types

Example shared type problem:


‣ suppose you have an RGB type much like the one in ColorTypes.jl


it’s simple: it bundles a red, a green and a blue value together

for simplicity, let’s say it’s non-parametric—r/g/b fields are Float64


‣ it comes with some basic operations that make sense to the author


Suppose additionally that someone else wants to add operations


‣ this is a pretty simple and reasonable thing to want to do


‣ example: https://github.com/JuliaGraphics/ColorVectorSpace.jl

https://github.com/JuliaGraphics/ColorVectorSpace.jl


Sharing Common Types

In Julia, how does this work?


‣ just add methods to RGB in your own code


that’s it, there’s no problem

example: ColorVectorSpaces


‣ works for existing operations

Base.zero(::Type{RGB}) = RGB(0,0,0) 

‣ works for new operations

# coefficients from squaring conversion to grayscale and normalizing 

dotc(x::RGB, y::RGB) = 0.200*x.r*y.r + 0.771*x.g*y.g + 0.029*x.b*y.b



Sharing Common Types

What’s the big deal? Is this really harder in other languages?


‣ surprisingly, yes—especially in class-based object-oriented ones


we’ll call these languages “CBOO” for short


In a CBOO languages, methods go “inside” of classes


‣ methods are literally defined textually inside of the class definition


‣ to add methods to a class, you have two choices:


1. edit the original class and add methods there

2. inherit from the original class and add methods there



Sharing Common Types

Adding every method to the RGB class is problematic


‣ you have to convince the author that it’s a good idea


they may be reluctant since they’ll have to maintain your code


‣ if everyone convinces them, the class become huge 

you’re probably not the only one who wants to add some stuff


‣ you can’t change your mind without potentially breaking every user


e.g. ColorVectorSpaces appears to be an abandoned experiment

in Julia, anyone who doesn’t load ColorVectorSpaces is unaffected



Sharing Common Types

Inheriting from the RGB class is just as problematic


‣ it needs a new name—say MyRGB—instead of just RGB


‣ my operations won’t apply to plain RGB objects created by others


there are techniques to deal with this with fancy names like “Dependency 
Injection” and “Inversion of Control” but they are a pain in the butt


‣ using multiple extensions together requires multiple inheritance


if there’s MyRGB and YourRGB need OurRGB that inherits from both in 
order to use them together—assuming the language can even do that



Sharing Common Types

So in CBOO we have to choose between two lousy options


‣ there are actually two more options but they are also bad


1. give up on dispatch 
• use external functions: f(x, y) instead of x.f(y)

• f can be defined outside of class in separate code base

• gives up all code selection power also (ruins other kind of reuse)


2. give up on code sharing 
• just make your own version of RGB

• can call it whatever you want, including RGB

• often the best option in CBOO languages 😢



Sharing Common Types

The key capability in Julia that allows sharing common types is:


‣ you can define methods on types after the type is defined 

‣ can be done in a separate package which can be loaded or not


Additional subtleties:


‣ generic functions are properly namespaces unlike methods in CBOO


‣ i.e. MyPackage.foo and YourPackage.foo are separate functions



Generic Code

Example generic algorithm:


using LinearAlgebra 

function f(A, vs) 
    t = zero(eltype(A)) 
    for v in vs 
        t += inner(v, A, v)  # <= multiple dispatch 
    end 
end 

inner(v, A, v) = dot(v, A*v)  # very generic defintion 

Pro tip: to write highly generic code, just leave off all types!



Generic Code

Let’s play with the code to understand it



Generic Code

Let’s go a step further


‣ let’s define a new type to which this code applies


‣ we’ll define a one-hot vector type


represents a vector with a single 1 and otherwise 0 entries

v = ⟨0, …, 0, 1, 0, …, 0⟩


commonly used in machine learning

can be represented very compactly



import Base: size, getindex, * 

struct OneHotVector <: AbstractVector{Bool} 
    len :: Int 
    ind :: Int 
end 

# define some methods 

size(v::OneHotVector) = (v.len,) 

getindex(v::OneHotVector, i::Integer) = i == v.ind

Generic Code: OneHotVector type



Generic Code: OneHotVector

Back to the playground… er, REPL



Generic Code: inner analysis

Let’s zoom in on inner(v, A, v):


inner(v, A, v) = dot(v, A*v) 

Breaking down the computation:


‣ A*v calls a generic matrix multiplication implementation


• iterates through columns of A and multiplies them by each entry in v

• returns a copy of column of A with type Vector{Float64}


‣ dot(v, A*v) calls a generic dot implementation


does indexing into v::OneHotVector and A*v::Vector{Float64}


We can do much better based on our knowledge of OneHotVector!



Generic Code: optimizing matvec

For OneHotVectors all A*v is doing is selecting a column


‣ optimizing this in Julia is extremely simple


‣ just define the right method for the * function


This new method definition is all that’s required:


*(A::AbstractMatrix, v::OneHotVector) = A[:, v.ind]



Generic Code: optimizing matvec

Let’s take a look at matvec optimized 



Generic Code: optimizing inner

But we can do even better for inner(v, A, w) 

‣ for OneHotVectors just does scalar indexing into A


‣ just define a method for the right combination of arguments


This new method definition is all that’s required:


inner(v::OneHotVector, A, w::OneHotVector) = A[v.ind, w.ind]



Generic Code: optimizing inner

Let’s take a look at inner optimized



Generic Code: not just for optimization

In these cases multiple dispatch was used for speed:


‣ were slower-than-optimal but correct fallbacks


‣ generic * provided by Julia


‣ generic inner provided by us — dot(v, A*w)


Sometimes there is no generic implementation


‣ you will get a method error


‣ use multiple dispatch to provide missing functionality



Generic Code: single dispatch comparison

It’s possible but there are a lot of problems…


‣ *(A::AbstractMatrix, v::OneHotVector) = A[:, v.ind] 

Problem: need to dispatch on 2nd argument not the 1st


‣ AbstractMatrix.* can do “double dispatch”


AbstractMatrix.* calls v.__rmul__(A) or (or something like that)


‣ in Python this pattern is standard and the name is v.__rmul__


this is what default * does in Python already — but only for + and *


‣ in C++ and other languages you have to roll your own



Generic Code: single dispatch comparison

It’s possible but there are a lot of problems…

‣ inner(v::OneHotVector, A, w::OneHotVector) = A[v.ind, w.ind] 

Problem: need to dispatch on 1st and 3rd arguments 

‣ unclear how to do this in a single dispatch language


‣ “triple dispatch”? not a thing anyone actually does


‣ no real solution in single-dispatch languages



Generic Code: method overloading

What about method overloading in C++/Java/C# etc.?


‣ can write inner(v::OneHotVector, A, w::OneHotVector) 

doesn’t that solve the problem?

No: the method doesn’t get called when the caller is generic

‣ generic means v and w have abstract static type like AbstractVector

‣ above method is only called for concrete static type OneHotVector 



Multiple Dispatch!

dispatch 
degree syntax

dispatched on 
arguments

selection 
power

none f(x, y) { } O(1)

single x.f(y) {x} O(|X|)

multiple f(x, y) {x, y} O(|X|⋅|Y|)



Generic Code: single dispatch comparison

How real is the problem?


‣ generic code like this occurs in the wild in Julia all the time


‣ anecdotally, this kind of generic code “just works” 

the biggest problem is usually people “overtyping” their code


‣ this is the main difference from other languages


Therefore:


‣ it does seem to matter and multiple dispatch is the solution



Conclusion

Unusually large amounts of code reuse and sharing in Julia


Two varieties, both explained by aspects of multiple dispatch:


1. common types shared by very different packages


Reason: methods can be added to types after they are defined


2. generic algorithms applied to many different types


Reason: methods are selected based on all argument types


